Abstract
The complex mechanical behaviour of plant tissues reflects the complexity of their structure and material properties. Modelling has been widely used in studies of how cell walls, single cells and tissue respond to loading, both externally applied loading and loads on the cell wall resulting from changes in the pressure within fluid-filled cells. This paper reviews what approaches have been taken to modelling and simulation of cell wall, cell and tissue mechanics, and to what extent models have been successful in predicting mechanical behaviour. Advances in understanding of cell wall ultrastructure and the control of cell growth present opportunities for modelling to clarify how growth-related mechanical properties arise from wall polymeric structure and biochemistry.
Full Text
The Full Text of this article is available as a PDF (91.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
- Chaplain M. A., Sleeman B. D. An application of membrane theory to tip morphogenesis in Acetabularia. J Theor Biol. 1990 Sep 21;146(2):177–200. doi: 10.1016/s0022-5193(05)80134-1. [DOI] [PubMed] [Google Scholar]
- Cosgrove D. J. Expansive growth of plant cell walls. Plant Physiol Biochem. 2000 Jan-Feb;38(1-2):109–124. doi: 10.1016/s0981-9428(00)00164-9. [DOI] [PubMed] [Google Scholar]
- Gates R. S., Pitt R. E., Ruina A., Cooke J. R. Cell wall elastic constitutive laws and stress-strain behavior of plant vegetative tissue. Biorheology. 1986;23(5):453–466. doi: 10.3233/bir-1986-23503. [DOI] [PubMed] [Google Scholar]
- Hettiaratchi D. R., O'Callaghan J. R. A membrane model of plant cell extension. J Theor Biol. 1974 Jun;45(2):459–465. doi: 10.1016/0022-5193(74)90124-6. [DOI] [PubMed] [Google Scholar]
- Hettiaratchi D. R., O'Callaghan J. R. Structural mechanics of plant cells. J Theor Biol. 1978 Sep 21;74(2):235–257. doi: 10.1016/0022-5193(78)90074-7. [DOI] [PubMed] [Google Scholar]
- Kerstens S., Decraemer W. F., Verbelen J. P. Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol. 2001 Oct;127(2):381–385. [PMC free article] [PubMed] [Google Scholar]
- Köhler Lothar, Spatz Hanns-Christof. Micromechanics of plant tissues beyond the linear-elastic range. Planta. 2002 Feb 6;215(1):33–40. doi: 10.1007/s00425-001-0718-9. [DOI] [PubMed] [Google Scholar]
- Liu KK, Williams DR, Briscoe BJ. Compressive deformation of a single microcapsule. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Dec;54(6):6673–6680. doi: 10.1103/physreve.54.6673. [DOI] [PubMed] [Google Scholar]
- Qiong G., Pitt R. E., Ruina A. A mechanics model of the compression of cells with finite initial contact area. Biorheology. 1990;27(2):225–240. doi: 10.3233/bir-1990-27207. [DOI] [PubMed] [Google Scholar]
- Sellen D. B. The mechanical properties of plant cell walls. Symp Soc Exp Biol. 1980;34:315–329. [PubMed] [Google Scholar]
- Verbelen J. P., Kerstens S. Polarization confocal microscopy and congo red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. J Microsc. 2000 May;198(Pt 2):101–107. doi: 10.1046/j.1365-2818.2000.00691.x. [DOI] [PubMed] [Google Scholar]
- Veytsman B. A., Cosgrove D. J. A model of cell wall expansion based on thermodynamics of polymer networks. Biophys J. 1998 Nov;75(5):2240–2250. doi: 10.1016/S0006-3495(98)77668-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H. I., Spence R. D., Sharpe P. J., Goeschl J. D. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles. Plant Cell Environ. 1985 Nov;8(8):563–570. doi: 10.1111/j.1365-3040.1985.tb01694.x. [DOI] [PubMed] [Google Scholar]