Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Sep 29;358(1437):1461–1471. doi: 10.1098/rstb.2003.1346

Modelling cartilage mechanobiology.

Dennis R Carter 1, Marcy Wong 1
PMCID: PMC1693248  PMID: 14561337

Abstract

The growth, maintenance and ossification of cartilage are fundamental to skeletal development and are regulated throughout life by the mechanical cues that are imposed by physical activities. Finite element computer analyses have been used to study the role of local tissue mechanics on endochondral ossification patterns, skeletal morphology and articular cartilage thickness distributions. Using single-phase continuum material representations of cartilage, the results have indicated that local intermittent hydrostatic pressure promotes cartilage maintenance. Cyclic tensile strains (or shear), however, promote cartilage growth and ossification. Because single-phase material models cannot capture fluid exudation in articular cartilage, poroelastic (or biphasic) solid/fluid models are often implemented to study joint mechanics. In the middle and deep layers of articular cartilage where poroelastic analyses predict little fluid exudation, the cartilage phenotype is maintained by cyclic fluid pressure (consistent with the single-phase theory). In superficial articular layers the chondrocytes are exposed to tangential tensile strain in addition to the high fluid pressure. Furthermore, there is fluid exudation and matrix consolidation, leading to cell 'flattening'. As a result, the superficial layer assumes an altered, more fibrous phenotype. These computer model predictions of cartilage mechanobiology are consistent with results of in vitro cell and tissue and molecular biology experiments.

Full Text

The Full Text of this article is available as a PDF (898.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. G., Lai W. M., Mow V. C. An analysis of the unconfined compression of articular cartilage. J Biomech Eng. 1984 May;106(2):165–173. doi: 10.1115/1.3138475. [DOI] [PubMed] [Google Scholar]
  2. Athanasiou K. A., Agarwal A., Dzida F. J. Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J Orthop Res. 1994 May;12(3):340–349. doi: 10.1002/jor.1100120306. [DOI] [PubMed] [Google Scholar]
  3. Beaupré G. S., Stevens S. S., Carter D. R. Mechanobiology in the development, maintenance, and degeneration of articular cartilage. J Rehabil Res Dev. 2000 Mar-Apr;37(2):145–151. [PubMed] [Google Scholar]
  4. Carter D. R., Beaupré G. S. Linear elastic and poroelastic models of cartilage can produce comparable stress results: a comment on Tanck et al. (J Biomech 32:153-161, 1999) J Biomech. 1999 Nov;32(11):1255–1257. doi: 10.1016/s0021-9290(99)00123-2. [DOI] [PubMed] [Google Scholar]
  5. Carter D. R., Orr T. E., Fyhrie D. P., Schurman D. J. Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop Relat Res. 1987 Jun;(219):237–250. [PubMed] [Google Scholar]
  6. Carter D. R., Rapperport D. J., Fyhrie D. P., Schurman D. J. Relation of coxarthrosis to stresses and morphogenesis. A finite element analysis. Acta Orthop Scand. 1987 Dec;58(6):611–619. doi: 10.3109/17453678709146498. [DOI] [PubMed] [Google Scholar]
  7. Carter D. R., Wong M. The role of mechanical loading histories in the development of diarthrodial joints. J Orthop Res. 1988;6(6):804–816. doi: 10.1002/jor.1100060604. [DOI] [PubMed] [Google Scholar]
  8. Eckstein F., Lemberger B., Stammberger T., Englmeier K. H., Reiser M. Patellar cartilage deformation in vivo after static versus dynamic loading. J Biomech. 2000 Jul;33(7):819–825. doi: 10.1016/s0021-9290(00)00034-8. [DOI] [PubMed] [Google Scholar]
  9. Eckstein F., Tieschky M., Faber S., Englmeier K. H., Reiser M. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat Embryol (Berl) 1999 Oct;200(4):419–424. doi: 10.1007/s004290050291. [DOI] [PubMed] [Google Scholar]
  10. Gray M. L., Pizzanelli A. M., Grodzinsky A. J., Lee R. C. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res. 1988;6(6):777–792. doi: 10.1002/jor.1100060602. [DOI] [PubMed] [Google Scholar]
  11. Hayes W. C., Bodine A. J. Flow-independent viscoelastic properties of articular cartilage matrix. J Biomech. 1978;11(8-9):407–419. doi: 10.1016/0021-9290(78)90075-1. [DOI] [PubMed] [Google Scholar]
  12. Heegaard J. H., Beaupré G. S., Carter D. R. Mechanically modulated cartilage growth may regulate joint surface morphogenesis. J Orthop Res. 1999 Jul;17(4):509–517. doi: 10.1002/jor.1100170408. [DOI] [PubMed] [Google Scholar]
  13. Henderson J. H., Carter D. R. Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures. Bone. 2002 Dec;31(6):645–653. doi: 10.1016/s8756-3282(02)00911-0. [DOI] [PubMed] [Google Scholar]
  14. Herberhold C., Faber S., Stammberger T., Steinlechner M., Putz R., Englmeier K. H., Reiser M., Eckstein F. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech. 1999 Dec;32(12):1287–1295. doi: 10.1016/s0021-9290(99)00130-x. [DOI] [PubMed] [Google Scholar]
  15. Honda K., Ohno S., Tanimoto K., Ijuin C., Tanaka N., Doi T., Kato Y., Tanne K. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur J Cell Biol. 2000 Sep;79(9):601–609. doi: 10.1078/0171-9335-00089. [DOI] [PubMed] [Google Scholar]
  16. Hudelmaier M., Glaser C., Hohe J., Englmeier K. H., Reiser M., Putz R., Eckstein F. Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum. 2001 Nov;44(11):2556–2561. doi: 10.1002/1529-0131(200111)44:11<2556::aid-art436>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  17. Karvonen R. L., Negendank W. G., Teitge R. A., Reed A. H., Miller P. R., Fernandez-Madrid F. Factors affecting articular cartilage thickness in osteoarthritis and aging. J Rheumatol. 1994 Jul;21(7):1310–1318. [PubMed] [Google Scholar]
  18. Kurrat H. J., Oberländer W. The thickness of the cartilage in the hip joint. J Anat. 1978 May;126(Pt 1):145–155. [PMC free article] [PubMed] [Google Scholar]
  19. Lane L. B., Villacin A., Bullough P. G. The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br. 1977 Aug;59(3):272–278. doi: 10.1302/0301-620X.59B3.893504. [DOI] [PubMed] [Google Scholar]
  20. Long P., Hu J., Piesco N., Buckley M., Agarwal S. Low magnitude of tensile strain inhibits IL-1beta-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro. J Dent Res. 2001 May;80(5):1416–1420. doi: 10.1177/00220345010800050601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Macirowski T., Tepic S., Mann R. W. Cartilage stresses in the human hip joint. J Biomech Eng. 1994 Feb;116(1):10–18. doi: 10.1115/1.2895693. [DOI] [PubMed] [Google Scholar]
  22. Mizuno Shuichi, Tateishi Tetsuya, Ushida Takashi, Glowacki Julie. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J Cell Physiol. 2002 Dec;193(3):319–327. doi: 10.1002/jcp.10180. [DOI] [PubMed] [Google Scholar]
  23. Mow V. C., Kuei S. C., Lai W. M., Armstrong C. G. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng. 1980 Feb;102(1):73–84. doi: 10.1115/1.3138202. [DOI] [PubMed] [Google Scholar]
  24. Prendergast P. J., Huiskes R., Søballe K. ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech. 1997 Jun;30(6):539–548. doi: 10.1016/s0021-9290(96)00140-6. [DOI] [PubMed] [Google Scholar]
  25. Rushfeldt P. D., Mann R. W., Harris W. H. Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum--I. Ultrasonic measurement of acetabular surfaces, sphericity and cartilage thickness. J Biomech. 1981;14(4):253–260. doi: 10.1016/0021-9290(81)90070-1. [DOI] [PubMed] [Google Scholar]
  26. Rushfeldt P. D., Mann R. W., Harris W. H. Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum. II Instrumented endoprosthesis measurement of articular surface pressure distribution. J Biomech. 1981;14(5):315–323. doi: 10.1016/0021-9290(81)90041-5. [DOI] [PubMed] [Google Scholar]
  27. Shefelbine S. J., Tardieu C., Carter Dennis R. Development of the femoral bicondylar angle in hominid bipedalism. Bone. 2002 May;30(5):765–770. doi: 10.1016/s8756-3282(02)00700-7. [DOI] [PubMed] [Google Scholar]
  28. Smith R. L., Rusk S. F., Ellison B. E., Wessells P., Tsuchiya K., Carter D. R., Caler W. E., Sandell L. J., Schurman D. J. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res. 1996 Jan;14(1):53–60. doi: 10.1002/jor.1100140110. [DOI] [PubMed] [Google Scholar]
  29. Smith R. L., Thomas K. D., Schurman D. J., Carter D. R., Wong M., van der Meulen M. C. Rabbit knee immobilization: bone remodeling precedes cartilage degradation. J Orthop Res. 1992 Jan;10(1):88–95. doi: 10.1002/jor.1100100111. [DOI] [PubMed] [Google Scholar]
  30. Soltz M. A., Ateshian G. A. A Conewise Linear Elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J Biomech Eng. 2000 Dec;122(6):576–586. doi: 10.1115/1.1324669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Soltz M. A., Ateshian G. A. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech. 1998 Oct;31(10):927–934. doi: 10.1016/s0021-9290(98)00105-5. [DOI] [PubMed] [Google Scholar]
  32. Soltz M. A., Ateshian G. A. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann Biomed Eng. 2000 Feb;28(2):150–159. doi: 10.1114/1.239. [DOI] [PubMed] [Google Scholar]
  33. Soulhat J., Buschmann M. D., Shirazi-Adl A. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng. 1999 Jun;121(3):340–347. doi: 10.1115/1.2798330. [DOI] [PubMed] [Google Scholar]
  34. Sun H. B., Yokota H. Altered mRNA level of matrix metalloproteinase-13 in MH7A synovial cells under mechanical loading and unloading. Bone. 2001 Apr;28(4):399–403. doi: 10.1016/s8756-3282(00)00459-2. [DOI] [PubMed] [Google Scholar]
  35. Tanck E., van Driel W. D., Hagen J. W., Burger E. H., Blankevoort L., Huiskes R. Why does intermittent hydrostatic pressure enhance the mineralization process in fetal cartilage? J Biomech. 1999 Feb;32(2):153–161. doi: 10.1016/s0021-9290(98)00165-1. [DOI] [PubMed] [Google Scholar]
  36. Vanwanseele B., Eckstein F., Knecht H., Stüssi E., Spaepen A. Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum. 2002 Aug;46(8):2073–2078. doi: 10.1002/art.10462. [DOI] [PubMed] [Google Scholar]
  37. Vanwanseele B., Lucchinetti E., Stüssi E. The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions. Osteoarthritis Cartilage. 2002 May;10(5):408–419. doi: 10.1053/joca.2002.0529. [DOI] [PubMed] [Google Scholar]
  38. Vu T. H., Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000 Sep 1;14(17):2123–2133. doi: 10.1101/gad.815400. [DOI] [PubMed] [Google Scholar]
  39. Wong M., Ponticiello M., Kovanen V., Jurvelin J. S. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J Biomech. 2000 Sep;33(9):1049–1054. doi: 10.1016/s0021-9290(00)00084-1. [DOI] [PubMed] [Google Scholar]
  40. Wong M., Wuethrich P., Buschmann M. D., Eggli P., Hunziker E. Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res. 1997 Mar;15(2):189–196. doi: 10.1002/jor.1100150206. [DOI] [PubMed] [Google Scholar]
  41. Wu Q. Q., Chen Q. Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res. 2000 May 1;256(2):383–391. doi: 10.1006/excr.2000.4847. [DOI] [PubMed] [Google Scholar]
  42. Yellowley C. E., Jacobs C. R., Donahue H. J. Mechanisms contributing to fluid-flow-induced Ca2+ mobilization in articular chondrocytes. J Cell Physiol. 1999 Sep;180(3):402–408. doi: 10.1002/(SICI)1097-4652(199909)180:3<402::AID-JCP11>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES