Abstract
Conceptual, physical and mathematical models have all proved useful in biomechanics. Conceptual models, which have been used only occasionally, clarify a point without having to be constructed physically or analysed mathematically. Some physical models are designed to demonstrate a proposed mechanism, for example the folding mechanisms of insect wings. Others have been used to check the conclusions of mathematical modelling. However, others facilitate observations that would be difficult to make on real organisms, for example on the flow of air around the wings of small insects. Mathematical models have been used more often than physical ones. Some of them are predictive, designed for example to calculate the effects of anatomical changes on jumping performance, or the pattern of flow in a 3D assembly of semicircular canals. Others seek an optimum, for example the best possible technique for a high jump. A few have been used in inverse optimization studies, which search for variables that are optimized by observed patterns of behaviour. Mathematical models range from the extreme simplicity of some models of walking and running, to the complexity of models that represent numerous body segments and muscles, or elaborate bone shapes. The simpler the model, the clearer it is which of its features is essential to the calculated effect.
Full Text
The Full Text of this article is available as a PDF (106.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander R. M. A minimum energy cost hypothesis for human arm trajectories. Biol Cybern. 1997 Feb;76(2):97–105. doi: 10.1007/s004220050324. [DOI] [PubMed] [Google Scholar]
- Alexander R. M. Leg design and jumping technique for humans, other vertebrates and insects. Philos Trans R Soc Lond B Biol Sci. 1995 Feb 28;347(1321):235–248. doi: 10.1098/rstb.1995.0024. [DOI] [PubMed] [Google Scholar]
- Alexander R. M. Optimum take-off techniques for high and long jumps. Philos Trans R Soc Lond B Biol Sci. 1990 Jul 30;329(1252):3–10. doi: 10.1098/rstb.1990.0144. [DOI] [PubMed] [Google Scholar]
- Blickhan R. The spring-mass model for running and hopping. J Biomech. 1989;22(11-12):1217–1227. doi: 10.1016/0021-9290(89)90224-8. [DOI] [PubMed] [Google Scholar]
- Dickinson M. H., Lehmann F. O., Sane S. P. Wing rotation and the aerodynamic basis of insect flight. Science. 1999 Jun 18;284(5422):1954–1960. doi: 10.1126/science.284.5422.1954. [DOI] [PubMed] [Google Scholar]
- Flash T., Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985 Jul;5(7):1688–1703. doi: 10.1523/JNEUROSCI.05-07-01688.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzog W., Leonard T. R. Validation of optimization models that estimate the forces exerted by synergistic muscles. J Biomech. 1991;24 (Suppl 1):31–39. doi: 10.1016/0021-9290(91)90375-w. [DOI] [PubMed] [Google Scholar]
- McGeer T. Passive bipedal running. Proc R Soc Lond B Biol Sci. 1990 May 22;240(1297):107–134. doi: 10.1098/rspb.1990.0030. [DOI] [PubMed] [Google Scholar]
- McMahon T. A., Cheng G. C. The mechanics of running: how does stiffness couple with speed? J Biomech. 1990;23 (Suppl 1):65–78. doi: 10.1016/0021-9290(90)90042-2. [DOI] [PubMed] [Google Scholar]
- Muller M., Verhagen J. H. A new quantitative model of total endolymph flow in the system of semicircular ducts. J Theor Biol. 1988 Oct 21;134(4):473–501. doi: 10.1016/s0022-5193(88)80053-5. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rstb.1999.0437. [DOI] [PMC free article] [Google Scholar]
- Pandy M. G., Zajac F. E., Sim E., Levine W. S. An optimal control model for maximum-height human jumping. J Biomech. 1990;23(12):1185–1198. doi: 10.1016/0021-9290(90)90376-e. [DOI] [PubMed] [Google Scholar]
- Rayfield E. J., Norman D. B., Horner C. C., Horner J. R., Smith P. M., Thomason J. J., Upchurch P. Cranial design and function in a large theropod dinosaur. Nature. 2001 Feb 22;409(6823):1033–1037. doi: 10.1038/35059070. [DOI] [PubMed] [Google Scholar]
- Seireg A., Arvikar R. J. A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J Biomech. 1973 May;6(3):313–326. doi: 10.1016/0021-9290(73)90053-5. [DOI] [PubMed] [Google Scholar]
- Seyfarth A., Blickhan R., Van Leeuwen J. L. Optimum take-off techniques and muscle design for long jump. J Exp Biol. 2000 Feb;203(Pt 4):741–750. doi: 10.1242/jeb.203.4.741. [DOI] [PubMed] [Google Scholar]
- Uno Y., Kawato M., Suzuki R. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern. 1989;61(2):89–101. doi: 10.1007/BF00204593. [DOI] [PubMed] [Google Scholar]
- Van Leeuwen J. L., Spoor C. W. Modelling mechanically stable muscle architectures. Philos Trans R Soc Lond B Biol Sci. 1992 May 29;336(1277):275–292. doi: 10.1098/rstb.1992.0061. [DOI] [PubMed] [Google Scholar]
- Vogel S., Bretz W. L. Interfacial Organisms: Passive Ventilation in the Velocity Gradients near Surfaces. Science. 1972 Jan 14;175(4018):210–211. doi: 10.1126/science.175.4018.210. [DOI] [PubMed] [Google Scholar]
- Yeadon M. R. The simulation of aerial movement--II. A mathematical inertia model of the human body. J Biomech. 1990;23(1):67–74. doi: 10.1016/0021-9290(90)90370-i. [DOI] [PubMed] [Google Scholar]