Abstract
The pulvinar is an 'associative' thalamic nucleus, meaning that most of its input and output relationships are formed with the cerebral cortex. The function of this circuitry is little understood and its anatomy, though much investigated, is notably recondite. This is because pulvinar connection patterns disrespect the architectural subunits (anterior, medial, lateral and inferior pulvinar nuclei) that have been the traditional reference system. This article presents a simplified, global model of the organization of cortico-pulvinar connections so as to pursue their structure-function relationships. Connections between the cortex and pulvinar are topographically organized, and as a result the pulvinar contains a 'map' of the cortical sheet. However, the topography is very blurred. Hence the pulvinar connection zones of nearby cortical areas overlap, allowing indirect transcortical communication via the pulvinar. A general observation is that indirect cortico-pulvino-cortical circuits tend to mimic direct cortico-cortical pathways: this is termed 'the replication principle'. It is equally apt for certain pairs (or groups) of nearby cortical areas that happen not to connect with each other. The 'replication' of this non-connection is achieved by discontinuities and dislocations of the cortical topography within the pulvinar, such that the associated pair of connection zones do not overlap. Certain of these deformations can be used to divide the global cortical topography into specific sub-domains, which form the natural units of a connectional subdivision of the pulvinar. A substantial part of the pulvinar also expresses visual topography, reflecting visual maps in occipital cortex. There are just two well-ordered visual maps in the pulvinar, that both receive projections from area V1, and several other occipital areas; the resulting duplication of cortical topography means that each visual map also acts as a separate connection domain. In summary, the model identifies four topographically ordered connection domains, and reconciles the coexistence of visual and cortical maps in two of them. The replication principle operates at and below the level of domain structure. It is argued that cortico-pulvinar circuitry replicates the pattern of cortical circuitry but not its function, playing a more regulatory role instead. Thalamic neurons differ from cortical neurons in their inherent rhythmicity, and the pattern of cortico-thalamic connections must govern the formation of specific resonant circuits. The broad implication is that the pulvinar acts to coordinate cortical information processing by facilitating and sustaining the formation of synchronized trans-areal assemblies; a more pointed suggestion is that, owing to the considerable blurring of cortical topography in the pulvinar, rival cortical assemblies may be in competition to recruit thalamic elements in order to outlast each other in activity.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M. M., Hof P. R., Gattass R., Webster M. J., Ungerleider L. G. Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol. 2000 Apr 10;419(3):377–393. doi: 10.1002/(sici)1096-9861(20000410)419:3<377::aid-cne9>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
- Adams N. C., Lozsádi D. A., Guillery R. W. Complexities in the thalamocortical and corticothalamic pathways. Eur J Neurosci. 1997 Feb;9(2):204–209. doi: 10.1111/j.1460-9568.1997.tb01391.x. [DOI] [PubMed] [Google Scholar]
- Allman J. M., Kaas J. H., Lane R. H., Miezin F. M. A representation of the visual field in the inferior nucleus of the pulvinar in the owl monkey (Aotus trivirgatus). Brain Res. 1972 May 26;40(2):291–302. doi: 10.1016/0006-8993(72)90135-7. [DOI] [PubMed] [Google Scholar]
- Allman J. M., Kaas J. H. The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. Brain Res. 1974 Aug 16;76(2):247–265. doi: 10.1016/0006-8993(74)90458-2. [DOI] [PubMed] [Google Scholar]
- Asanuma C., Andersen R. A., Cowan W. M. The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J Comp Neurol. 1985 Nov 15;241(3):357–381. doi: 10.1002/cne.902410309. [DOI] [PubMed] [Google Scholar]
- Baizer J. S., Desimone R., Ungerleider L. G. Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis Neurosci. 1993 Jan-Feb;10(1):59–72. doi: 10.1017/s0952523800003229. [DOI] [PubMed] [Google Scholar]
- Baizer J. S., Ungerleider L. G., Desimone R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci. 1991 Jan;11(1):168–190. doi: 10.1523/JNEUROSCI.11-01-00168.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baleydier C., Mauguière F. Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: a double fluorescent tracer study in monkey. Exp Brain Res. 1987;66(2):385–393. doi: 10.1007/BF00243312. [DOI] [PubMed] [Google Scholar]
- Baleydier C., Morel A. Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey. Vis Neurosci. 1992 May;8(5):391–405. doi: 10.1017/s0952523800004922. [DOI] [PubMed] [Google Scholar]
- Barbas H., Henion T. H., Dermon C. R. Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1991 Nov 1;313(1):65–94. doi: 10.1002/cne.903130106. [DOI] [PubMed] [Google Scholar]
- Beck P. D., Kaas J. H. Thalamic connections of the dorsomedial visual area in primates. J Comp Neurol. 1998 Jul 6;396(3):381–398. [PubMed] [Google Scholar]
- Bender D. B. Receptive-field properties of neurons in the macaque inferior pulvinar. J Neurophysiol. 1982 Jul;48(1):1–17. doi: 10.1152/jn.1982.48.1.1. [DOI] [PubMed] [Google Scholar]
- Bender D. B. Retinotopic organization of macaque pulvinar. J Neurophysiol. 1981 Sep;46(3):672–693. doi: 10.1152/jn.1981.46.3.672. [DOI] [PubMed] [Google Scholar]
- Bender D. B., Youakim M. Effect of attentive fixation in macaque thalamus and cortex. J Neurophysiol. 2001 Jan;85(1):219–234. doi: 10.1152/jn.2001.85.1.219. [DOI] [PubMed] [Google Scholar]
- Benevento L. A., Davis B. Topographical projections of the prestriate cortex to the pulvinar nuclei in the macaque monkey: an autoradiographic study. Exp Brain Res. 1977 Nov 24;30(2-3):405–424. doi: 10.1007/BF00237265. [DOI] [PubMed] [Google Scholar]
- Benevento L. A., Miller J. Visual responses of single neurons in the caudal lateral pulvinar of the macaque monkey. J Neurosci. 1981 Nov;1(11):1268–1278. doi: 10.1523/JNEUROSCI.01-11-01268.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benevento L. A., Port J. D. Single neurons with both form/color differential responses and saccade-related responses in the nonretinotopic pulvinar of the behaving macaque monkey. Vis Neurosci. 1995 May-Jun;12(3):523–544. doi: 10.1017/s0952523800008439. [DOI] [PubMed] [Google Scholar]
- Benevento L. A., Rezak M. The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study. Brain Res. 1976 May 21;108(1):1–24. doi: 10.1016/0006-8993(76)90160-8. [DOI] [PubMed] [Google Scholar]
- Benevento L. A., Standage G. P. The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey. J Comp Neurol. 1983 Jul 1;217(3):307–336. doi: 10.1002/cne.902170307. [DOI] [PubMed] [Google Scholar]
- Billock V. A. Very short-term visual memory via reverberation: a role for the cortico-thalamic excitatory circuit in temporal filling-in during blinks and saccades? Vision Res. 1997 Apr;37(7):949–953. doi: 10.1016/s0042-6989(96)00257-x. [DOI] [PubMed] [Google Scholar]
- Blasdel G. G., Lund J. S. Termination of afferent axons in macaque striate cortex. J Neurosci. 1983 Jul;3(7):1389–1413. doi: 10.1523/JNEUROSCI.03-07-01389.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boussaoud D., Desimone R., Ungerleider L. G. Subcortical connections of visual areas MST and FST in macaques. Vis Neurosci. 1992 Sep-Oct;9(3-4):291–302. doi: 10.1017/s0952523800010701. [DOI] [PubMed] [Google Scholar]
- Boussaoud D., Desimone R., Ungerleider L. G. Visual topography of area TEO in the macaque. J Comp Neurol. 1991 Apr 22;306(4):554–575. doi: 10.1002/cne.903060403. [DOI] [PubMed] [Google Scholar]
- Bruce C., Desimone R., Gross C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol. 1981 Aug;46(2):369–384. doi: 10.1152/jn.1981.46.2.369. [DOI] [PubMed] [Google Scholar]
- Cavada C., Compañy T., Hernández-González A., Reinoso-Suárez F. Acetylcholinesterase histochemistry in the macaque thalamus reveals territories selectively connected to frontal, parietal and temporal association cortices. J Chem Neuroanat. 1995 May;8(4):245–257. doi: 10.1016/0891-0618(95)00050-h. [DOI] [PubMed] [Google Scholar]
- Chalupa L. M., Coyle R. S., Lindsley D. B. Effect of pulvinar lesions on visual pattern discrimination in monkeys. J Neurophysiol. 1976 Mar;39(2):354–369. doi: 10.1152/jn.1976.39.2.354. [DOI] [PubMed] [Google Scholar]
- Crick F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4586–4590. doi: 10.1073/pnas.81.14.4586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crick F., Koch C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature. 1998 Jan 15;391(6664):245–250. doi: 10.1038/34584. [DOI] [PubMed] [Google Scholar]
- Cusick C. G., Scripter J. L., Darensbourg J. G., Weber J. T. Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr. J Comp Neurol. 1993 Oct 1;336(1):1–30. doi: 10.1002/cne.903360102. [DOI] [PubMed] [Google Scholar]
- Darian-Smith C., Tan A., Edwards S. Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. J Comp Neurol. 1999 Jul 26;410(2):211–234. [PubMed] [Google Scholar]
- Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/annurev.ne.18.030195.001205. [DOI] [PubMed] [Google Scholar]
- Ding Y., Casagrande V. A. The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis Neurosci. 1997 Jul-Aug;14(4):691–704. doi: 10.1017/s0952523800012657. [DOI] [PubMed] [Google Scholar]
- Dow B. M. Functional classes of cells and their laminar distribution in monkey visual cortex. J Neurophysiol. 1974 Sep;37(5):927–946. doi: 10.1152/jn.1974.37.5.927. [DOI] [PubMed] [Google Scholar]
- Duncan J., Humphreys G., Ward R. Competitive brain activity in visual attention. Curr Opin Neurobiol. 1997 Apr;7(2):255–261. doi: 10.1016/s0959-4388(97)80014-1. [DOI] [PubMed] [Google Scholar]
- Eckhorn R. Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. Prog Brain Res. 1994;102:405–426. doi: 10.1016/S0079-6123(08)60556-7. [DOI] [PubMed] [Google Scholar]
- Engel A. K., Fries P., Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci. 2001 Oct;2(10):704–716. doi: 10.1038/35094565. [DOI] [PubMed] [Google Scholar]
- Felleman D. J., Burkhalter A., Van Essen D. C. Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex. J Comp Neurol. 1997 Mar 3;379(1):21–47. doi: 10.1002/(sici)1096-9861(19970303)379:1<21::aid-cne3>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
- Felleman D. J., Van Essen D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991 Jan-Feb;1(1):1–47. doi: 10.1093/cercor/1.1.1-a. [DOI] [PubMed] [Google Scholar]
- Felleman D. J., Van Essen D. C. Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J Neurophysiol. 1987 Apr;57(4):889–920. doi: 10.1152/jn.1987.57.4.889. [DOI] [PubMed] [Google Scholar]
- Finlay B. L., Schiller P. H., Volman S. F. Quantitative studies of single-cell properties in monkey striate cortex. IV. Corticotectal cells. J Neurophysiol. 1976 Nov;39(6):1352–1361. doi: 10.1152/jn.1976.39.6.1352. [DOI] [PubMed] [Google Scholar]
- Gattass R., Gross C. G. Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol. 1981 Sep;46(3):621–638. doi: 10.1152/jn.1981.46.3.621. [DOI] [PubMed] [Google Scholar]
- Gegenfurtner K. R., Kiper D. C., Levitt J. B. Functional properties of neurons in macaque area V3. J Neurophysiol. 1997 Apr;77(4):1906–1923. doi: 10.1152/jn.1997.77.4.1906. [DOI] [PubMed] [Google Scholar]
- Gray C. M. The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron. 1999 Sep;24(1):31-47, 111-25. doi: 10.1016/s0896-6273(00)80820-x. [DOI] [PubMed] [Google Scholar]
- Gray D., Gutierrez C., Cusick C. G. Neurochemical organization of inferior pulvinar complex in squirrel monkeys and macaques revealed by acetylcholinesterase histochemistry, calbindin and Cat-301 immunostaining, and Wisteria floribunda agglutinin binding. J Comp Neurol. 1999 Jul 5;409(3):452–468. doi: 10.1002/(sici)1096-9861(19990705)409:3<452::aid-cne9>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
- Guillery R. W. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J Anat. 1995 Dec;187(Pt 3):583–592. [PMC free article] [PubMed] [Google Scholar]
- Gutierrez C., Cola M. G., Seltzer B., Cusick C. Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys. J Comp Neurol. 2000 Mar 27;419(1):61–86. doi: 10.1002/(sici)1096-9861(20000327)419:1<61::aid-cne4>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
- Gutierrez C., Cusick C. G. Area V1 in macaque monkeys projects to multiple histochemically defined subdivisions of the inferior pulvinar complex. Brain Res. 1997 Aug 15;765(2):349–356. doi: 10.1016/s0006-8993(97)00696-3. [DOI] [PubMed] [Google Scholar]
- Gutierrez C., Yaun A., Cusick C. G. Neurochemical subdivisions of the inferior pulvinar in macaque monkeys. J Comp Neurol. 1995 Dec 25;363(4):545–562. doi: 10.1002/cne.903630404. [DOI] [PubMed] [Google Scholar]
- Hackett T. A., Stepniewska I., Kaas J. H. Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol. 1998 Oct 19;400(2):271–286. doi: 10.1002/(sici)1096-9861(19981019)400:2<271::aid-cne8>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
- Hardy S. G., Lynch J. C. The spatial distribution of pulvinar neurons that project to two subregions of the inferior parietal lobule in the macaque. Cereb Cortex. 1992 May-Jun;2(3):217–230. doi: 10.1093/cercor/2.3.217. [DOI] [PubMed] [Google Scholar]
- Harting J. K., Huerta M. F., Frankfurter A. J., Strominger N. L., Royce G. J. Ascending pathways from the monkey superior colliculus: an autoradiographic analysis. J Comp Neurol. 1980 Aug 15;192(4):853–882. doi: 10.1002/cne.901920414. [DOI] [PubMed] [Google Scholar]
- Hikosaka K., Iwai E., Saito H., Tanaka K. Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J Neurophysiol. 1988 Nov;60(5):1615–1637. doi: 10.1152/jn.1988.60.5.1615. [DOI] [PubMed] [Google Scholar]
- Hilgetag C. C., O'Neill M. A., Young M. P. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos Trans R Soc Lond B Biol Sci. 2000 Jan 29;355(1393):71–89. doi: 10.1098/rstb.2000.0550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilgetag C. C., O'Neill M. A., Young M. P. Indeterminate organization of the visual system. Science. 1996 Feb 9;271(5250):776–777. doi: 10.1126/science.271.5250.776. [DOI] [PubMed] [Google Scholar]
- Hubel D. H., Livingstone M. S. Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. J Neurosci. 1990 Jul;10(7):2223–2237. doi: 10.1523/JNEUROSCI.10-07-02223.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol. 1972 Dec;146(4):421–450. doi: 10.1002/cne.901460402. [DOI] [PubMed] [Google Scholar]
- Höhl-Abrahão J. C., Creutzfeldt O. D. Topographical mapping of the thalamocortical projections in rodents and comparison with that in primates. Exp Brain Res. 1991;87(2):283–294. doi: 10.1007/BF00231845. [DOI] [PubMed] [Google Scholar]
- Itaya S. K., Van Hoesen G. W. Retinal projections to the inferior and medial pulvinar nuclei in the Old-World monkey. Brain Res. 1983 Jun 20;269(2):223–230. doi: 10.1016/0006-8993(83)90131-2. [DOI] [PubMed] [Google Scholar]
- Iwai E., Yukie M. Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta, and M. fascicularis). J Comp Neurol. 1987 Jul 15;261(3):362–387. doi: 10.1002/cne.902610304. [DOI] [PubMed] [Google Scholar]
- Jones E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 2001 Oct;24(10):595–601. doi: 10.1016/s0166-2236(00)01922-6. [DOI] [PubMed] [Google Scholar]
- Jones E. G. Viewpoint: the core and matrix of thalamic organization. Neuroscience. 1998 Jul;85(2):331–345. doi: 10.1016/s0306-4522(97)00581-2. [DOI] [PubMed] [Google Scholar]
- Kennedy H., Bullier J. A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey. J Neurosci. 1985 Oct;5(10):2815–2830. doi: 10.1523/JNEUROSCI.05-10-02815.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LaBerge D., Buchsbaum M. S. Positron emission tomographic measurements of pulvinar activity during an attention task. J Neurosci. 1990 Feb;10(2):613–619. doi: 10.1523/JNEUROSCI.10-02-00613.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt J. B., Yoshioka T., Lund J. S. Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey. Exp Brain Res. 1995;104(3):419–430. doi: 10.1007/BF00231977. [DOI] [PubMed] [Google Scholar]
- Lin C. S., Kaas J. H. Projections from the medial nucleus of the inferior pulvinar complex to the middle temporal area of the visual cortex. Neuroscience. 1980;5(12):2219–2228. doi: 10.1016/0306-4522(80)90138-4. [DOI] [PubMed] [Google Scholar]
- Lin C. S., Kaas J. H. The inferior pulvinar complex in owl monkeys: architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex. J Comp Neurol. 1979 Oct 15;187(4):655–678. doi: 10.1002/cne.901870403. [DOI] [PubMed] [Google Scholar]
- Llinás R., Ribary U., Contreras D., Pedroarena C. The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1841–1849. doi: 10.1098/rstb.1998.0336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lund J. S., Lund R. D., Hendrickson A. E., Bunt A. H., Fuchs A. F. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol. 1975 Dec 1;164(3):287–303. doi: 10.1002/cne.901640303. [DOI] [PubMed] [Google Scholar]
- Lysakowski A., Standage G. P., Benevento L. A. An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to cortical areas V1 and V4 in the macaque monkey: a double label retrograde tracer study. Exp Brain Res. 1988;69(3):651–661. doi: 10.1007/BF00247317. [DOI] [PubMed] [Google Scholar]
- Miller R. Cortico-thalamic interplay and the security of operation of neural assemblies and temporal chains in the cerebral cortex. Biol Cybern. 1996 Sep;75(3):263–275. doi: 10.1007/s004220050293. [DOI] [PubMed] [Google Scholar]
- Morel A., Bullier J. Anatomical segregation of two cortical visual pathways in the macaque monkey. Vis Neurosci. 1990 Jun;4(6):555–578. doi: 10.1017/s0952523800005769. [DOI] [PubMed] [Google Scholar]
- Mumford D. On the computational architecture of the neocortex. I. The role of the thalamo-cortical loop. Biol Cybern. 1991;65(2):135–145. doi: 10.1007/BF00202389. [DOI] [PubMed] [Google Scholar]
- Nakagawa S., Tanaka S. Retinal projections to the pulvinar nucleus of the macaque monkey: a re-investigation using autoradiography. Exp Brain Res. 1984;57(1):151–157. doi: 10.1007/BF00231141. [DOI] [PubMed] [Google Scholar]
- O'Brien B. J., Abel P. L., Olavarria J. F. The retinal input to calbindin-D28k-defined subdivisions in macaque inferior pulvinar. Neurosci Lett. 2001 Oct 26;312(3):145–148. doi: 10.1016/s0304-3940(01)02220-0. [DOI] [PubMed] [Google Scholar]
- Ogren M. P., Hendrickson A. E. The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey. Brain Res. 1977 Dec 2;137(2):343–350. doi: 10.1016/0006-8993(77)90344-4. [DOI] [PubMed] [Google Scholar]
- Ogren M. P., Hendrickson A. E. The morphology and distribution of striate cortex terminals in the inferior and lateral subdivisions of the Macaca monkey pulvinar. J Comp Neurol. 1979 Nov 1;188(1):179–199. doi: 10.1002/cne.901880113. [DOI] [PubMed] [Google Scholar]
- Ogren M. P., Hendrickson A. E. The structural organization of the inferior and lateral subdivisions of the Macaca monkey pulvinar. J Comp Neurol. 1979 Nov 1;188(1):147–178. doi: 10.1002/cne.901880112. [DOI] [PubMed] [Google Scholar]
- Olshausen B. A., Anderson C. H., Van Essen D. C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci. 1993 Nov;13(11):4700–4719. doi: 10.1523/JNEUROSCI.13-11-04700.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orban G. A., Kennedy H., Bullier J. Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. J Neurophysiol. 1986 Aug;56(2):462–480. doi: 10.1152/jn.1986.56.2.462. [DOI] [PubMed] [Google Scholar]
- Pandya D. N., Rosene D. L., Doolittle A. M. Corticothalamic connections of auditory-related areas of the temporal lobe in the rhesus monkey. J Comp Neurol. 1994 Jul 15;345(3):447–471. doi: 10.1002/cne.903450311. [DOI] [PubMed] [Google Scholar]
- Petersen S. E., Robinson D. L., Keys W. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J Neurophysiol. 1985 Oct;54(4):867–886. doi: 10.1152/jn.1985.54.4.867. [DOI] [PubMed] [Google Scholar]
- Rezak M., Benevento L. A. A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey. Brain Res. 1979 May 5;167(1):19–40. doi: 10.1016/0006-8993(79)90260-9. [DOI] [PubMed] [Google Scholar]
- Robinson D. L., Petersen S. E. The pulvinar and visual salience. Trends Neurosci. 1992 Apr;15(4):127–132. doi: 10.1016/0166-2236(92)90354-b. [DOI] [PubMed] [Google Scholar]
- Rockland K. S., Andresen J., Cowie R. J., Robinson D. L. Single axon analysis of pulvinocortical connections to several visual areas in the macaque. J Comp Neurol. 1999 Apr 5;406(2):221–250. doi: 10.1002/(sici)1096-9861(19990405)406:2<221::aid-cne7>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
- Rockland K. S. Convergence and branching patterns of round, type 2 corticopulvinar axons. J Comp Neurol. 1998 Jan 26;390(4):515–536. doi: 10.1002/(sici)1096-9861(19980126)390:4<515::aid-cne5>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Rockland K. S. Two types of corticopulvinar terminations: round (type 2) and elongate (type 1). J Comp Neurol. 1996 Apr 22;368(1):57–87. doi: 10.1002/(SICI)1096-9861(19960422)368:1<57::AID-CNE5>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Romanski L. M., Giguere M., Bates J. F., Goldman-Rakic P. S. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1997 Mar 17;379(3):313–332. [PubMed] [Google Scholar]
- Schiller P. H., Finlay B. L., Volman S. F. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J Neurophysiol. 1976 Nov;39(6):1288–1319. doi: 10.1152/jn.1976.39.6.1288. [DOI] [PubMed] [Google Scholar]
- Selemon L. D., Goldman-Rakic P. S. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci. 1988 Nov;8(11):4049–4068. doi: 10.1523/JNEUROSCI.08-11-04049.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman S. M., Guillery R. W. Functional organization of thalamocortical relays. J Neurophysiol. 1996 Sep;76(3):1367–1395. doi: 10.1152/jn.1996.76.3.1367. [DOI] [PubMed] [Google Scholar]
- Sherman S. M., Guillery R. W. On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7121–7126. doi: 10.1073/pnas.95.12.7121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shipp S., Blanton M., Zeki S. A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A. Eur J Neurosci. 1998 Oct;10(10):3171–3193. doi: 10.1046/j.1460-9568.1998.00327.x. [DOI] [PubMed] [Google Scholar]
- Shipp S. Corticopulvinar connections of areas V5, V4, and V3 in the macaque monkey: a dual model of retinal and cortical topographies. J Comp Neurol. 2001 Oct 29;439(4):469–490. doi: 10.1002/cne.1363. [DOI] [PubMed] [Google Scholar]
- Shipp S., Zeki S. Segregation and convergence of specialised pathways in macaque monkey visual cortex. J Anat. 1995 Dec;187(Pt 3):547–562. [PMC free article] [PubMed] [Google Scholar]
- Sillito A. M., Jones H. E., Gerstein G. L., West D. C. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature. 1994 Jun 9;369(6480):479–482. doi: 10.1038/369479a0. [DOI] [PubMed] [Google Scholar]
- Singer W., Gray C. M. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci. 1995;18:555–586. doi: 10.1146/annurev.ne.18.030195.003011. [DOI] [PubMed] [Google Scholar]
- Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron. 1999 Sep;24(1):49-65, 111-25. doi: 10.1016/s0896-6273(00)80821-1. [DOI] [PubMed] [Google Scholar]
- Soares J. G., Gattass R., Souza A. P., Rosa M. G., Fiorani M., Jr, Brandão B. L. Connectional and neurochemical subdivisions of the pulvinar in Cebus monkeys. Vis Neurosci. 2001 Jan-Feb;18(1):25–41. doi: 10.1017/s0952523801181034. [DOI] [PubMed] [Google Scholar]
- Standage G. P., Benevento L. A. The organization of connections between the pulvinar and visual area MT in the macaque monkey. Brain Res. 1983 Mar 7;262(2):288–294. doi: 10.1016/0006-8993(83)91020-x. [DOI] [PubMed] [Google Scholar]
- Stanton G. B., Goldberg M. E., Bruce C. J. Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol. 1988 May 22;271(4):473–492. doi: 10.1002/cne.902710402. [DOI] [PubMed] [Google Scholar]
- Stepniewska I., Kaas J. H. Architectonic subdivisions of the inferior pulvinar in New World and Old World monkeys. Vis Neurosci. 1997 Nov-Dec;14(6):1043–1060. doi: 10.1017/s0952523800011767. [DOI] [PubMed] [Google Scholar]
- Stepniewska I., Qi H. X., Kaas J. H. Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? Eur J Neurosci. 1999 Feb;11(2):469–480. doi: 10.1046/j.1460-9568.1999.00461.x. [DOI] [PubMed] [Google Scholar]
- Stepniewska I., Ql H. X., Kaas J. H. Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Vis Neurosci. 2000 Jul-Aug;17(4):529–549. doi: 10.1017/s0952523800174048. [DOI] [PubMed] [Google Scholar]
- Steriade M., Amzica F., Contreras D. Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci. 1996 Jan;16(1):392–417. doi: 10.1523/JNEUROSCI.16-01-00392.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steriade M., Contreras D., Amzica F., Timofeev I. Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci. 1996 Apr 15;16(8):2788–2808. doi: 10.1523/JNEUROSCI.16-08-02788.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steriade M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience. 2000;101(2):243–276. doi: 10.1016/s0306-4522(00)00353-5. [DOI] [PubMed] [Google Scholar]
- Steriade M. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb Cortex. 1997 Sep;7(6):583–604. doi: 10.1093/cercor/7.6.583. [DOI] [PubMed] [Google Scholar]
- Tononi G., Sporns O., Edelman G. M. Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex. 1992 Jul-Aug;2(4):310–335. doi: 10.1093/cercor/2.4.310. [DOI] [PubMed] [Google Scholar]
- Trojanowski J. O., Jacobson S. Peroxidase labeled subcortical afferents to pulvinar in rhesus monkey. Brain Res. 1975 Oct 24;97(1):144–150. doi: 10.1016/0006-8993(75)90922-1. [DOI] [PubMed] [Google Scholar]
- Ungerleider L. G., Desimone R., Galkin T. W., Mishkin M. Subcortical projections of area MT in the macaque. J Comp Neurol. 1984 Mar 1;223(3):368–386. doi: 10.1002/cne.902230304. [DOI] [PubMed] [Google Scholar]
- Ungerleider L. G., Galkin T. W., Mishkin M. Visuotopic organization of projections from striate cortex to inferior and lateral pulvinar in rhesus monkey. J Comp Neurol. 1983 Jun 20;217(2):137–157. doi: 10.1002/cne.902170203. [DOI] [PubMed] [Google Scholar]
- Van Essen D. C., Drury H. A. Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci. 1997 Sep 15;17(18):7079–7102. doi: 10.1523/JNEUROSCI.17-18-07079.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward Robert, Danziger Shai, Owen Vanessa, Rafal Robert. Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinar. Nat Neurosci. 2002 Feb;5(2):99–100. doi: 10.1038/nn794. [DOI] [PubMed] [Google Scholar]
- Webster M. J., Bachevalier J., Ungerleider L. G. Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys. J Comp Neurol. 1993 Sep 1;335(1):73–91. doi: 10.1002/cne.903350106. [DOI] [PubMed] [Google Scholar]
- Wong-Riley M. T. Neuronal and synaptic organization of the normal dorsal lateral geniculate nucleus of the squirrel monkey, Saimiri sciureus. J Comp Neurol. 1972 Jan;144(1):25–59. doi: 10.1002/cne.901440103. [DOI] [PubMed] [Google Scholar]
- Yeterian E. H., Pandya D. N. Corticothalamic connections of extrastriate visual areas in rhesus monkeys. J Comp Neurol. 1997 Feb 24;378(4):562–585. [PubMed] [Google Scholar]
- Yeterian E. H., Pandya D. N. Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. J Comp Neurol. 1985 Jul 15;237(3):408–426. doi: 10.1002/cne.902370309. [DOI] [PubMed] [Google Scholar]
- Yeterian E. H., Pandya D. N. Corticothalamic connections of the superior temporal sulcus in rhesus monkeys. Exp Brain Res. 1991;83(2):268–284. doi: 10.1007/BF00231152. [DOI] [PubMed] [Google Scholar]
- Yeterian E. H., Pandya D. N. Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol. 1989 Apr 1;282(1):80–97. doi: 10.1002/cne.902820107. [DOI] [PubMed] [Google Scholar]
- Young M. P. Objective analysis of the topological organization of the primate cortical visual system. Nature. 1992 Jul 9;358(6382):152–155. doi: 10.1038/358152a0. [DOI] [PubMed] [Google Scholar]
- Zeki S. M. Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J Physiol. 1978 Apr;277:273–290. doi: 10.1113/jphysiol.1978.sp012272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von der Malsburg C., Schneider W. A neural cocktail-party processor. Biol Cybern. 1986;54(1):29–40. doi: 10.1007/BF00337113. [DOI] [PubMed] [Google Scholar]