Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Oct 29;358(1438):1755–1771. doi: 10.1098/rstb.2002.1214

Resurrecting Van Leeuwenhoek's rotifers: a reappraisal of the role of disaccharides in anhydrobiosis.

A Tunnacliffe 1, J Lapinski 1
PMCID: PMC1693263  PMID: 14561331

Abstract

In 1702, Van Leeuwenhoek was the first to describe the phenomenon of anhydrobiosis in a species of bdelloid rotifer, Philodina roseola. It is the purpose of this review to examine what has been learned since then about the extreme desiccation tolerance in rotifers and how this compares with our understanding of anhydrobiosis in other organisms. Remarkably, much of what is known today about the requirements for successful anhydrobiosis, and the degree of biostability conferred by the dry state, was already determined in principle by the time of Spallanzani in the late 18th century. Most modern research on anhydrobiosis has emphasized the importance of the non-reducing disaccharides trehalose and sucrose, one or other sugar being present at high concentrations during desiccation of anhydrobiotic nematodes, brine shrimp cysts, bakers' yeast, resurrection plants and plant seeds. These sugars are proposed to act as water replacement molecules, and as thermodynamic and kinetic stabilizers of biomolecules and membranes. In apparent contradiction of the prevailing models, recent experiments from our laboratory show that bdelloid rotifers undergo anhydrobiosis without producing trehalose or any analogous molecule. This has prompted us to critically re-examine the association of disaccharides with anhydrobiosis in the literature. Surprisingly, current hypotheses are based almost entirely on in vitro data: there is very limited information which is more than simply correlative in the literature on living systems. In many species, disaccharide accumulation occurs at approximately the same time as desiccation tolerance is acquired. However, several studies indicate that these sugars are not sufficient for anhydrobiosis; furthermore, there is no conclusive evidence, through mutagenesis or functional knockout experiments, for example, that sugars are necessary for anhydrobiosis. Indeed, some plant seeds and micro-organisms, like the rotifer, exhibit excellent desiccation tolerance in the absence of high intracellular sugar concentrations. Accordingly, it seems appropriate to call for a re-evaluation of our understanding of anhydrobiosis and to embark on new experimental programmes to determine the key molecular mechanisms involved.

Full Text

The Full Text of this article is available as a PDF (571.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera J. M., Karel M. Preservation of biological materials under desiccation. Crit Rev Food Sci Nutr. 1997 Apr;37(3):287–309. doi: 10.1080/10408399709527776. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982 Dec 7;21(25):6536–6544. doi: 10.1021/bi00268a033. [DOI] [PubMed] [Google Scholar]
  3. Argüelles J. C. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol. 2000 Oct;174(4):217–224. doi: 10.1007/s002030000192. [DOI] [PubMed] [Google Scholar]
  4. Bartels D., Salamini F. Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol. 2001 Dec;127(4):1346–1353. [PMC free article] [PubMed] [Google Scholar]
  5. Battista J. R., Park M. J., McLemore A. E. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology. 2001 Sep;43(2):133–139. doi: 10.1006/cryo.2001.2357. [DOI] [PubMed] [Google Scholar]
  6. Blackman S. A., Obendorf R. L., Leopold A. C. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol. 1992 Sep;100(1):225–230. doi: 10.1104/pp.100.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bloom F. R., Price P., Lao G., Xia J. L., Crowe J. H., Battista J. R., Helm R. F., Slaughter S., Potts M. Engineering mammalian cells for solid-state sensor applications. Biosens Bioelectron. 2001 Sep;16(7-8):603–608. doi: 10.1016/s0956-5663(01)00175-0. [DOI] [PubMed] [Google Scholar]
  8. Blázquez M. A., Santos E., Flores C. L., Martínez-Zapater J. M., Salinas J., Gancedo C. Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J. 1998 Mar;13(5):685–689. doi: 10.1046/j.1365-313x.1998.00063.x. [DOI] [PubMed] [Google Scholar]
  9. Bolen D. W., Baskakov I. V. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol. 2001 Jul 27;310(5):955–963. doi: 10.1006/jmbi.2001.4819. [DOI] [PubMed] [Google Scholar]
  10. CLEGG J. S. THE ORIGIN OF TREHALOSE AND ITS SIGNIFICANCE DURING THE FORMATION OF ENCYSTED DORMANT EMBRYOS OF ARTEMIA SALINA. Comp Biochem Physiol. 1965 Jan;14:135–143. doi: 10.1016/0010-406x(65)90014-9. [DOI] [PubMed] [Google Scholar]
  11. Caiola M. G., Ocampo-Friedmann R., Friedmann E. I. Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia. 1993;32(5):315–322. doi: 10.2216/i0031-8884-32-5-315.1. [DOI] [PubMed] [Google Scholar]
  12. Cerrutti P., Segovia de Huergo M., Galvagno M., Schebor C., del Pilar Buera M. Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices. Appl Microbiol Biotechnol. 2000 Oct;54(4):575–580. doi: 10.1007/s002530000428. [DOI] [PubMed] [Google Scholar]
  13. Chen T., Acker J. P., Eroglu A., Cheley S., Bayley H., Fowler A., Toner M. Beneficial effect of intracellular trehalose on the membrane integrity of dried mammalian cells. Cryobiology. 2001 Sep;43(2):168–181. doi: 10.1006/cryo.2001.2360. [DOI] [PubMed] [Google Scholar]
  14. Clegg J. S. Cryptobiosis--a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol. 2001 Apr;128(4):613–624. doi: 10.1016/s1096-4959(01)00300-1. [DOI] [PubMed] [Google Scholar]
  15. Clegg J. S., Seitz P., Seitz W., Hazlewood C. F. Cellular responses to extreme water loss: the water-replacement hypothesis. Cryobiology. 1982 Jun;19(3):306–316. doi: 10.1016/0011-2240(82)90159-6. [DOI] [PubMed] [Google Scholar]
  16. Colaço C., Sen S., Thangavelu M., Pinder S., Roser B. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology (N Y) 1992 Sep;10(9):1007–1011. doi: 10.1038/nbt0992-1007. [DOI] [PubMed] [Google Scholar]
  17. Crowe J. H., Carpenter J. F., Crowe L. M. The role of vitrification in anhydrobiosis. Annu Rev Physiol. 1998;60:73–103. doi: 10.1146/annurev.physiol.60.1.73. [DOI] [PubMed] [Google Scholar]
  18. Crowe J. H., Crowe L. M., Oliver A. E., Tsvetkova N., Wolkers W., Tablin F. The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology. 2001 Sep;43(2):89–105. doi: 10.1006/cryo.2001.2353. [DOI] [PubMed] [Google Scholar]
  19. Crowe J. H., Hoekstra F. A., Crowe L. M. Anhydrobiosis. Annu Rev Physiol. 1992;54:579–599. doi: 10.1146/annurev.ph.54.030192.003051. [DOI] [PubMed] [Google Scholar]
  20. Crowe L. M., Crowe J. H. Anhydrobiosis: a strategy for survival. Adv Space Res. 1992;12(4):239–247. doi: 10.1016/0273-1177(92)90178-z. [DOI] [PubMed] [Google Scholar]
  21. Eleutherio E. C., Araujo P. S., Panek A. D. Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta. 1993 Mar 21;1156(3):263–266. doi: 10.1016/0304-4165(93)90040-f. [DOI] [PubMed] [Google Scholar]
  22. Eleutherio E. C., Maia F. M., Pereira M. D., Degré R., Cameron D., Panek A. D. Induction of desiccation tolerance by osmotic treatment in Saccharomyces uvarum var. carlsbergensis. Can J Microbiol. 1997 May;43(5):495–498. doi: 10.1139/m97-070. [DOI] [PubMed] [Google Scholar]
  23. Estruch F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev. 2000 Oct;24(4):469–486. doi: 10.1111/j.1574-6976.2000.tb00551.x. [DOI] [PubMed] [Google Scholar]
  24. Ford B. J. The van Leeuwenhoek specimens. Notes Rec R Soc Lond. 1981;36(1):37–59. doi: 10.1098/rsnr.1981.0003. [DOI] [PubMed] [Google Scholar]
  25. Gaff D. F. Desiccation-tolerant flowering plants in southern Africa. Science. 1971 Dec 3;174(4013):1033–1034. doi: 10.1126/science.174.4013.1033. [DOI] [PubMed] [Google Scholar]
  26. García De Castro A., Bredholt H., Strøm A. R., Tunnacliffe A. Anhydrobiotic engineering of gram-negative bacteria. Appl Environ Microbiol. 2000 Sep;66(9):4142–4144. doi: 10.1128/aem.66.9.4142-4144.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. García de Castro A., Tunnacliffe A. Intracellular trehalose improves osmotolerance but not desiccation tolerance in mammalian cells. FEBS Lett. 2000 Dec 29;487(2):199–202. doi: 10.1016/s0014-5793(00)02340-1. [DOI] [PubMed] [Google Scholar]
  28. Gordon S. L., Oppenheimer S. R., Mackay A. M., Brunnabend J., Puhlev I., Levine F. Recovery of human mesenchymal stem cells following dehydration and rehydration. Cryobiology. 2001 Sep;43(2):182–187. doi: 10.1006/cryo.2001.2361. [DOI] [PubMed] [Google Scholar]
  29. Grably Melanie R., Stanhill Ariel, Tell Osnat, Engelberg David. HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol. 2002 Apr;44(1):21–35. doi: 10.1046/j.1365-2958.2002.02860.x. [DOI] [PubMed] [Google Scholar]
  30. Guo N., Puhlev I., Brown D. R., Mansbridge J., Levine F. Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol. 2000 Feb;18(2):168–171. doi: 10.1038/72616. [DOI] [PubMed] [Google Scholar]
  31. Hengge-Aronis Regine. Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol. 2002 May;4(3):341–346. [PubMed] [Google Scholar]
  32. Hershkovitz N., Oren A., Cohen Y. Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microbiol. 1991 Mar;57(3):645–648. doi: 10.1128/aem.57.3.645-648.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hoekstra F. A., Golovina E. A., Buitink J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 2001 Sep;6(9):431–438. doi: 10.1016/s1360-1385(01)02052-0. [DOI] [PubMed] [Google Scholar]
  34. Hottiger T., Boller T., Wiemken A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett. 1987 Aug 10;220(1):113–115. doi: 10.1016/0014-5793(87)80886-4. [DOI] [PubMed] [Google Scholar]
  35. Ingram J., Bartels D. THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):377–403. doi: 10.1146/annurev.arplant.47.1.377. [DOI] [PubMed] [Google Scholar]
  36. KEILIN D. The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B Biol Sci. 1959 Mar 17;150(939):149–191. doi: 10.1098/rspb.1959.0013. [DOI] [PubMed] [Google Scholar]
  37. Kleines M., Elster R. C., Rodrigo M. J., Blervacq A. S., Salamini F., Bartels D. Isolation and expression analysis of two stress-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.). Planta. 1999 Jul;209(1):13–24. doi: 10.1007/s004250050602. [DOI] [PubMed] [Google Scholar]
  38. LEA C. H., HANNAN R. S., GREAVES R. I. N. The reaction between proteins and reducing sugars in the 'dry' state; dried human blood plasma. Biochem J. 1950 Nov-Dec;47(5):626–629. doi: 10.1042/bj0470626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Leslie S. B., Israeli E., Lighthart B., Crowe J. H., Crowe L. M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995 Oct;61(10):3592–3597. doi: 10.1128/aem.61.10.3592-3597.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Linders L. J., Wolkers W. F., Hoekstra F. A., van 't Riet K. Effect of added carbohydrates on membrane phase behavior and survival of dried Lactobacillus plantarum. Cryobiology. 1997 Aug;35(1):31–40. doi: 10.1006/cryo.1997.2021. [DOI] [PubMed] [Google Scholar]
  41. Mansell J. L., Clegg J. S. Cellular and molecular consequences of reduced cell water content. Cryobiology. 1983 Oct;20(5):591–612. doi: 10.1016/0011-2240(83)90048-2. [DOI] [PubMed] [Google Scholar]
  42. Manzanera M., García de Castro A., Tøndervik A., Rayner-Brandes M., Strøm A. R., Tunnacliffe A. Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440. Appl Environ Microbiol. 2002 Sep;68(9):4328–4333. doi: 10.1128/AEM.68.9.4328-4333.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mattimore V., Battista J. R. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol. 1996 Feb;178(3):633–637. doi: 10.1128/jb.178.3.633-637.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nickle David C., Learn Gerald H., Rain Matthew W., Mullins James I., Mittler John E. Curiously modern DNA for a "250 million-year-old" bacterium. J Mol Evol. 2002 Jan;54(1):134–137. doi: 10.1007/s00239-001-0025-x. [DOI] [PubMed] [Google Scholar]
  45. Nockrashy AS El-, Frampton V. L. Destruction of lysine by nonreducing sugars. Biochem Biophys Res Commun. 1967 Sep 7;28(5):675–681. doi: 10.1016/0006-291x(67)90368-3. [DOI] [PubMed] [Google Scholar]
  46. Oliver A. E., Leprince O., Wolkers W. F., Hincha D. K., Heyer A. G., Crowe J. H. Non-disaccharide-based mechanisms of protection during drying. Cryobiology. 2001 Sep;43(2):151–167. doi: 10.1006/cryo.2001.2359. [DOI] [PubMed] [Google Scholar]
  47. Ooms JJJ., Leon-Kloosterziel K. M., Bartels D., Koornneef M., Karssen C. M. Acquisition of Desiccation Tolerance and Longevity in Seeds of Arabidopsis thaliana (A Comparative Study Using Abscisic Acid-Insensitive abi3 Mutants). Plant Physiol. 1993 Aug;102(4):1185–1191. doi: 10.1104/pp.102.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ophir T., Gutnick D. L. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol. 1994 Feb;60(2):740–745. doi: 10.1128/aem.60.2.740-745.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Perry R. N. Desiccation survival of parasitic nematodes. Parasitology. 1999;119 (Suppl):S19–S30. [PubMed] [Google Scholar]
  50. Potts M. Desiccation tolerance of prokaryotes. Microbiol Rev. 1994 Dec;58(4):755–805. doi: 10.1128/mr.58.4.755-805.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Potts M. Desiccation tolerance: a simple process? Trends Microbiol. 2001 Nov;9(11):553–559. doi: 10.1016/s0966-842x(01)02231-4. [DOI] [PubMed] [Google Scholar]
  52. Puhlev I., Guo N., Brown D. R., Levine F. Desiccation tolerance in human cells. Cryobiology. 2001 May;42(3):207–217. doi: 10.1006/cryo.2001.2324. [DOI] [PubMed] [Google Scholar]
  53. Ruis H., Schüller C. Stress signaling in yeast. Bioessays. 1995 Nov;17(11):959–965. doi: 10.1002/bies.950171109. [DOI] [PubMed] [Google Scholar]
  54. Sano F., Asakawa N., Inoue Y., Sakurai M. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology. 1999 Aug;39(1):80–87. doi: 10.1006/cryo.1999.2188. [DOI] [PubMed] [Google Scholar]
  55. Schebor C., Galvagno M., del Pilar Buera M., Chirife J. Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts. Biotechnol Prog. 2000 Mar-Apr;16(2):163–168. doi: 10.1021/bp990147y. [DOI] [PubMed] [Google Scholar]
  56. Singer M. A., Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1998 Apr;1(5):639–648. doi: 10.1016/s1097-2765(00)80064-7. [DOI] [PubMed] [Google Scholar]
  57. Timasheff S. N. Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry. 1992 Oct 20;31(41):9857–9864. doi: 10.1021/bi00156a001. [DOI] [PubMed] [Google Scholar]
  58. Tunnacliffe A., García de Castro A., Manzanera M. Anhydrobiotic engineering of bacterial and mammalian cells: is intracellular trehalose sufficient? Cryobiology. 2001 Sep;43(2):124–132. doi: 10.1006/cryo.2001.2356. [DOI] [PubMed] [Google Scholar]
  59. Vogel G., Aeschbacher R. A., Müller J., Boller T., Wiemken A. Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J. 1998 Mar;13(5):673–683. doi: 10.1046/j.1365-313x.1998.00064.x. [DOI] [PubMed] [Google Scholar]
  60. Vreeland R. H., Rosenzweig W. D., Powers D. W. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature. 2000 Oct 19;407(6806):897–900. doi: 10.1038/35038060. [DOI] [PubMed] [Google Scholar]
  61. White O., Eisen J. A., Heidelberg J. F., Hickey E. K., Peterson J. D., Dodson R. J., Haft D. H., Gwinn M. L., Nelson W. C., Richardson D. L. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 1999 Nov 19;286(5444):1571–1577. doi: 10.1126/science.286.5444.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Winderickx J., de Winde J. H., Crauwels M., Hino A., Hohmann S., Van Dijck P., Thevelein J. M. Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol Gen Genet. 1996 Sep 25;252(4):470–482. doi: 10.1007/BF02173013. [DOI] [PubMed] [Google Scholar]
  63. Wolkers W. F., Walker N. J., Tablin F., Crowe J. H. Human platelets loaded with trehalose survive freeze-drying. Cryobiology. 2001 Mar;42(2):79–87. doi: 10.1006/cryo.2001.2306. [DOI] [PubMed] [Google Scholar]
  64. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  65. de Castro A. G., Lapinski J., Tunnacliffe A. Anhydrobiotic engineering. Nat Biotechnol. 2000 May;18(5):473–473. doi: 10.1038/75237. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES