Abstract
The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management.
Full Text
The Full Text of this article is available as a PDF (311.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams PA, Ginzburg LR. The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol Evol. 2000 Aug;15(8):337–341. doi: 10.1016/s0169-5347(00)01908-x. [DOI] [PubMed] [Google Scholar]
- Coulson T., Catchpole E. A., Albon S. D., Morgan B. J., Pemberton J. M., Clutton-Brock T. H., Crawley M. J., Grenfell B. T. Age, sex, density, winter weather, and population crashes in Soay sheep. Science. 2001 May 25;292(5521):1528–1531. doi: 10.1126/science.292.5521.1528. [DOI] [PubMed] [Google Scholar]
- Grenfell B. T., Price O. F., Albon S. D., Clutton-Brock T. H. Overcompensation and population cycles in an ungulate. Nature. 1992 Feb 27;355(6363):823–826. doi: 10.1038/355823a0. [DOI] [PubMed] [Google Scholar]
- Krebs C. J., Boutin S., Boonstra R., Sinclair A. R., Smith J. N., Dale M. R., Martin K., Turkington R. Impact of food and predation on the snowshoe hare cycle. Science. 1995 Aug 25;269(5227):1112–1115. doi: 10.1126/science.269.5227.1112. [DOI] [PubMed] [Google Scholar]
- May R. M. Biological populations obeying difference equations: stable points, stable cycles, and chaos. J Theor Biol. 1975 Jun;51(2):511–524. doi: 10.1016/0022-5193(75)90078-8. [DOI] [PubMed] [Google Scholar]
- McNaughton SJ, Banyikwa FF, McNaughton MM. Promotion of the cycling of diet-enhancing nutrients by african grazers . Science. 1997 Dec 5;278(5344):1798–1800. doi: 10.1126/science.278.5344.1798. [DOI] [PubMed] [Google Scholar]
- Opal S. M., Jhung J. W., Keith J. C., Jr, Palardy J. E., Parejo N. A., Young L. D., Bhattacharjee A. Recombinant human interleukin-11 in experimental Pseudomonas aeruginosa sepsis in immunocompromised animals. J Infect Dis. 1998 Oct;178(4):1205–1208. doi: 10.1086/515686. [DOI] [PubMed] [Google Scholar]
- Peterson R. O., Page R. E., Dodge K. M. Wolves, moose, and the allometry of population cycles. Science. 1984 Jun 22;224(4655):1350–1352. doi: 10.1126/science.224.4655.1350. [DOI] [PubMed] [Google Scholar]
- Saether Bernt-Erik, Engen Steinar. Pattern of variation in avian population growth rates. Philos Trans R Soc Lond B Biol Sci. 2002 Sep 29;357(1425):1185–1195. doi: 10.1098/rstb.2002.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheffer M., Carpenter S., Foley J. A., Folke C., Walker B. Catastrophic shifts in ecosystems. Nature. 2001 Oct 11;413(6856):591–596. doi: 10.1038/35098000. [DOI] [PubMed] [Google Scholar]
- Sinclair A. R. E., Krebs Charles J. Complex numerical responses to top-down and bottom-up processes in vertebrate populations. Philos Trans R Soc Lond B Biol Sci. 2002 Sep 29;357(1425):1221–1231. doi: 10.1098/rstb.2002.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinclair A. R. Fertility control of mammal pests and the conservation of endangered marsupials. Reprod Fertil Dev. 1997;9(1):1–16. doi: 10.1071/r96057. [DOI] [PubMed] [Google Scholar]
- Solé R. V., Montoya J. M. Complexity and fragility in ecological networks. Proc Biol Sci. 2001 Oct 7;268(1480):2039–2045. doi: 10.1098/rspb.2001.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]