Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Oct 29;358(1438):1679–1700. doi: 10.1098/rstb.2003.1303

Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors.

Peter Ekström 1, Hilmar Meissl 1
PMCID: PMC1693265  PMID: 14561326

Abstract

Pineal evolution is envisaged as a gradual transformation of pinealocytes (a gradual regression of pinealocyte sensory capacity within a particular cell line), the so-called sensory cell line of the pineal organ. In most non-mammals the pineal organ is a directly photosensory organ, while the pineal organ of mammals (epiphysis cerebri) is a non-sensory neuroendocrine organ under photoperiod control. The phylogenetic transformation of the pineal organ is reflected in the morphology and physiology of the main parenchymal cell type, the pinealocyte. In anamniotes, pinealocytes with retinal cone photoreceptor-like characteristics predominate, whereas in sauropsids so-called rudimentary photoreceptors predominate. These have well-developed secretory characteristics, and have been interpreted as intermediaries between the anamniote pineal photoreceptors and the mammalian non-sensory pinealocytes. We have re-examined the original studies on which the gradual transformation hypothesis of pineal evolution is based, and found that the evidence for this model of pineal evolution is ambiguous. In the light of recent advances in the understanding of neural development mechanisms, we propose a new hypothesis of pineal evolution, in which the old notion 'gradual regression within the sensory cell line' should be replaced with 'changes in fate restriction within the neural lineage of the pineal field'.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki M. Cellular mechanism for norepinephrine suppression of pineal photoreceptor-like cell differentiation in rat pineal cultures. Dev Biol. 1992 Feb;149(2):440–447. doi: 10.1016/0012-1606(92)90298-u. [DOI] [PubMed] [Google Scholar]
  2. Araki M. Developmental potency of cultured pineal cells: an approach to pineal developmental biology. Microsc Res Tech. 2001 Apr 1;53(1):33–42. doi: 10.1002/jemt.1066. [DOI] [PubMed] [Google Scholar]
  3. Araki M. Diffusible factors produced by cultured neural retinal cells enhance in vitro differentiation of pineal cone photoreceptors of developing quail embryos. Brain Res Dev Brain Res. 1997 Dec 19;104(1-2):71–78. doi: 10.1016/s0165-3806(97)00147-8. [DOI] [PubMed] [Google Scholar]
  4. Araki M., Fukada Y., Shichida Y., Yoshizawa T., Tokunaga F. Differentiation of both rod and cone types of photoreceptors in the in vivo and in vitro developing pineal glands of the quail. Brain Res Dev Brain Res. 1992 Jan 17;65(1):85–92. doi: 10.1016/0165-3806(92)90011-k. [DOI] [PubMed] [Google Scholar]
  5. Araki M., Kodama R., Eguchi G., Yasujima M., Orii H., Watanabe K. Retinal differentiation from multipotential pineal cells of the embryonic quail. Neurosci Res. 1993 Oct;18(1):63–72. doi: 10.1016/0168-0102(93)90106-z. [DOI] [PubMed] [Google Scholar]
  6. Berson David M., Dunn Felice A., Takao Motoharu. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002 Feb 8;295(5557):1070–1073. doi: 10.1126/science.1067262. [DOI] [PubMed] [Google Scholar]
  7. Binkley S. A., Riebman J. B., Reilly K. B. The pineal gland: a biological clock in vitro. Science. 1978 Dec 15;202(4373):1198–1120. doi: 10.1126/science.214852. [DOI] [PubMed] [Google Scholar]
  8. Bischoff M. B. Photoreceptoral and secretory structures in the avian pineal organ. J Ultrastruct Res. 1969 Jul;28(1):16–26. doi: 10.1016/s0022-5320(69)90003-3. [DOI] [PubMed] [Google Scholar]
  9. Blackshaw S., Snyder S. H. Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function. J Neurosci. 1997 Nov 1;17(21):8074–8082. doi: 10.1523/JNEUROSCI.17-21-08074.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blackshaw S., Snyder S. H. Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J Neurosci. 1999 May 15;19(10):3681–3690. doi: 10.1523/JNEUROSCI.19-10-03681.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Blackshaw S., Snyder S. H. Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. J Neurosci. 1997 Nov 1;17(21):8083–8092. doi: 10.1523/JNEUROSCI.17-21-08083.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cahill G. M. Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Res. 1996 Feb 5;708(1-2):177–181. doi: 10.1016/0006-8993(95)01365-2. [DOI] [PubMed] [Google Scholar]
  13. Casarosa S., Andreazzoli M., Simeone A., Barsacchi G. Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development. Mech Dev. 1997 Jan;61(1-2):187–198. doi: 10.1016/s0925-4773(96)00640-5. [DOI] [PubMed] [Google Scholar]
  14. Chau K. Y., Munshi N., Keane-Myers A., Cheung-Chau K. W., Tai A. K., Manfioletti G., Dorey C. K., Thanos D., Zack D. J., Ono S. J. The architectural transcription factor high mobility group I(Y) participates in photoreceptor-specific gene expression. J Neurosci. 2000 Oct 1;20(19):7317–7324. doi: 10.1523/JNEUROSCI.20-19-07317.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chen S., Wang Q. L., Nie Z., Sun H., Lennon G., Copeland N. G., Gilbert D. J., Jenkins N. A., Zack D. J. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron. 1997 Nov;19(5):1017–1030. doi: 10.1016/s0896-6273(00)80394-3. [DOI] [PubMed] [Google Scholar]
  16. Chuang J. C., Mathers P. H., Raymond P. A. Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mech Dev. 1999 Jun;84(1-2):195–198. doi: 10.1016/s0925-4773(99)00077-5. [DOI] [PubMed] [Google Scholar]
  17. Chuang J. C., Raymond P. A. Zebrafish genes rx1 and rx2 help define the region of forebrain that gives rise to retina. Dev Biol. 2001 Mar 1;231(1):13–30. doi: 10.1006/dbio.2000.0125. [DOI] [PubMed] [Google Scholar]
  18. Clabough J. W. Cytological aspects of pineal development in rats and hamsters. Am J Anat. 1973 Jun;137(2):215–229. doi: 10.1002/aja.1001370208. [DOI] [PubMed] [Google Scholar]
  19. Collin J. P. Contribution à l'étude des follicules de l'épiphyse embryonnaire d'Oiseau. C R Acad Sci Hebd Seances Acad Sci D. 1966 May 23;262(21):2263–2266. [PubMed] [Google Scholar]
  20. Collin J. P. L'épiphyse des Lacertiliens: relations entre les données microélectroniques et celles de l'histochimie (en fluorescence ultraviolette) pour la détection des indole- et catécholamines. C R Seances Soc Biol Fil. 1969 Apr 3;162(10):1785–1789. [PubMed] [Google Scholar]
  21. Collin J. P., Meiniel A. Contribution à la connaissance des structures synaptiques du type ruban dans l'organe pinéal des vertébrés. Etude particulière en microscopie électronique des connexions de l'innervation efférente chez l'Ammocète de Lamproie de Planer. Arch Anat Microsc Morphol Exp. 1968 Jul-Sep;57(3):275–296. [PubMed] [Google Scholar]
  22. Collin J. P., Meiniel A. L'organe pinéal. Etudes combinées ultrastructurales, cytochimiques (monoamines) et expérimentales, chez Testudo mauritanica. Grains denses des cellules de la lignée "sensorielle" chez les vertébrrés. Arch Anat Microsc Morphol Exp. 1971 Jul-Sep;60(3):269–303. [PubMed] [Google Scholar]
  23. Collin J. P., Meiniel A. Métabolisme des indolamines dans l'organe pinéal de Lacerta (Reptiles, Lacertiliens). II. L'activité MAO et l'incorporation de 5-HTP-3H et de 5-HT-3H, dans les conditions normales et expérimentales. Z Zellforsch Mikrosk Anat. 1973 Dec 6;145(3):331–361. [PubMed] [Google Scholar]
  24. Collin J. P., Meiniel A. Métabolisme des indolamines dans l'organe pinéal de Lacerta (reptiles, lacertiliens). I. Intégration sélective de 5-HTP-3H (5-hydroxytryptophane-3H) et rétention de ses dérivivés dans les photorécepteurs rudimentaires sécrétoires. Z Zellforsch Mikrosk Anat. 1973;142(4):549–570. [PubMed] [Google Scholar]
  25. Concha M. L., Wilson S. W. Asymmetry in the epithalamus of vertebrates. J Anat. 2001 Jul-Aug;199(Pt 1-2):63–84. doi: 10.1046/j.1469-7580.2001.19910063.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Cook J. E., Chalupa L. M. Retinal mosaics: new insights into an old concept. Trends Neurosci. 2000 Jan;23(1):26–34. doi: 10.1016/s0166-2236(99)01487-3. [DOI] [PubMed] [Google Scholar]
  27. Deguchi T. Rhodopsin-like photosensitivity of isolated chicken pineal gland. Nature. 1981 Apr 23;290(5808):706–707. doi: 10.1038/290706a0. [DOI] [PubMed] [Google Scholar]
  28. EAKIN R. M., WESTFALL J. A. Further observations on the fine structure of the parietal eye of lizards. J Biophys Biochem Cytol. 1960 Oct;8:483–499. doi: 10.1083/jcb.8.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ekström P., Borg B., van Veen T. Ontogenetic development of the pineal organ, parapineal organ, and retina of the three-spined stickleback, Gasterosteus aculeatus L. (Teleostei). Development of photoreceptors. Cell Tissue Res. 1983;233(3):593–609. doi: 10.1007/BF00212227. [DOI] [PubMed] [Google Scholar]
  30. Ekström P., Johnsson C. M., Ohlin L. M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol. 2001 Jul 16;436(1):92–110. [PubMed] [Google Scholar]
  31. Ekström P., Meissl H. Electron microscopic analysis of S-antigen- and serotonin-immunoreactive neural and sensory elements in the photosensory pineal organ of the salmon. J Comp Neurol. 1990 Feb 1;292(1):73–82. doi: 10.1002/cne.902920105. [DOI] [PubMed] [Google Scholar]
  32. Ekström P., Meissl H. Intracellular staining of physiologically identified photoreceptor cells and hyperpolarizing interneurons in the teleost pineal organ. Neuroscience. 1988 Jun;25(3):1061–1070. doi: 10.1016/0306-4522(88)90059-0. [DOI] [PubMed] [Google Scholar]
  33. Ekström P., Meissl H. Neural elements in the pineal complex of the frog, Rana esculenta, I: Centrally projecting neurons. Vis Neurosci. 1990 May;4(5):389–397. doi: 10.1017/s0952523800005150. [DOI] [PubMed] [Google Scholar]
  34. Ekström P., Ostholm T., Meissl H., Bruun A., Richards J. G., Möhler H. Neural elements in the pineal complex of the frog, Rana esculenta, II: GABA-immunoreactive neurons and FMRFamide-immunoreactive efferent axons. Vis Neurosci. 1990 May;4(5):399–412. doi: 10.1017/s0952523800005162. [DOI] [PubMed] [Google Scholar]
  35. Ekström P. Photoreceptors and CSF-contacting neurons in the pineal organ of a teleost fish have direct axonal connections with the brain: an HRP-electron-microscopic study. J Neurosci. 1987 Apr;7(4):987–995. doi: 10.1523/JNEUROSCI.07-04-00987.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ekström P., van Veen T., Bruun A., Ehinger B. GABA-immunoreactive neurons in the photosensory pineal organ of the rainbow trout: two distinct neuronal populations. Cell Tissue Res. 1987 Oct;250(1):87–92. doi: 10.1007/BF00214658. [DOI] [PubMed] [Google Scholar]
  37. Engbretson G. A., Anderson K. J. Neuronal structure of the lacertilian parietal eye, I: A retrograde label and electron-microscopic study of the ganglion cells in the photoreceptor layer. Vis Neurosci. 1990 Oct;5(4):395–404. doi: 10.1017/s0952523800000481. [DOI] [PubMed] [Google Scholar]
  38. Engbretson G. A., Linser P. J. Glial cells of the parietal eye: structural and biochemical similarities to retinal Müller cells. J Comp Neurol. 1991 Dec 22;314(4):799–806. doi: 10.1002/cne.903140412. [DOI] [PubMed] [Google Scholar]
  39. Falcon J., Geffard M., Juillard M. T., Steinbusch H. W., Seguela P., Collin J. P. Immunocytochemical localization and circadian variations of serotonin and N-acetylserotonin in photoreceptor cells. Light and electron microscopic study in the teleost pineal organ. J Histochem Cytochem. 1984 May;32(5):486–492. doi: 10.1177/32.5.6371131. [DOI] [PubMed] [Google Scholar]
  40. Falcon J., Juillard M. T., Collin J. P. L'organe pinéal du Brochet (Esox lucius, L.). IV. Sérotonine endogène et activité monoamine oxydasique; étude histochimique, ultracytochimique et pharmacologique. Reprod Nutr Dev. 1980;20(1A):139–154. [PubMed] [Google Scholar]
  41. Falcón J., Bégay V., Goujon J. M., Voisin P., Guerlotté J., Collin J. P. Immunocytochemical localisation of hydroxyindole-O-methyltransferase in pineal photoreceptor cells of several fish species. J Comp Neurol. 1994 Mar 22;341(4):559–566. doi: 10.1002/cne.903410410. [DOI] [PubMed] [Google Scholar]
  42. Falcón J. Cellular circadian clocks in the pineal. Prog Neurobiol. 1999 Jun;58(2):121–162. doi: 10.1016/s0301-0082(98)00078-1. [DOI] [PubMed] [Google Scholar]
  43. Falcón J., Collin J. P. In vitro uptake and metabolism of [3H]indole compounds in the pineal organ of the pike. II. A radioautographic study. J Pineal Res. 1985;2(4):357–373. doi: 10.1111/j.1600-079x.1985.tb00716.x. [DOI] [PubMed] [Google Scholar]
  44. Fejér Z., Szél A., Röhlich P., Görcs T., Manzano e Silva M. J., Vígh B. Immunoreactive pinopsin in pineal and retinal photoreceptors of various vertebrates. Acta Biol Hung. 1997;48(4):463–471. [PubMed] [Google Scholar]
  45. Firth B. T., Kennaway D. J. Melatonin content of the pineal, parietal eye and blood plasma of the lizard, Trachydosaurus rugosus: effect of constant and fluctuating temperature. Brain Res. 1987 Feb 24;404(1-2):313–318. doi: 10.1016/0006-8993(87)91385-0. [DOI] [PubMed] [Google Scholar]
  46. Forsell J., Ekström P., Flamarique I. N., Holmqvist B. Expression of pineal ultraviolet- and green-like opsins in the pineal organ and retina of teleosts. J Exp Biol. 2001 Jul;204(Pt 14):2517–2525. doi: 10.1242/jeb.204.14.2517. [DOI] [PubMed] [Google Scholar]
  47. Forsell Johan, Holmqvist Bo, Ekström Peter. Molecular identification and developmental expression of UV and green opsin mRNAs in the pineal organ of the Atlantic halibut. Brain Res Dev Brain Res. 2002 May 30;136(1):51–62. doi: 10.1016/s0165-3806(02)00351-6. [DOI] [PubMed] [Google Scholar]
  48. Foster R. G., Provencio I., Bovee-Geurts P. H. M., DeGrip W. J. The photoreceptive capacity of the developing pineal gland and eye of the golden hamster (Mesocricetus auratus). J Neuroendocrinol. 2003 Apr;15(4):355–363. doi: 10.1046/j.1365-2826.2003.01004.x. [DOI] [PubMed] [Google Scholar]
  49. Foster R. G., Timmers A. M., Schalken J. J., De Grip W. J. A comparison of some photoreceptor characteristics in the pineal and retina. II. The Djungarian hamster (Phodopus sungorus). J Comp Physiol A. 1989 Aug;165(4):565–572. doi: 10.1007/BF00611242. [DOI] [PubMed] [Google Scholar]
  50. Furukawa T., Morrow E. M., Cepko C. L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell. 1997 Nov 14;91(4):531–541. doi: 10.1016/s0092-8674(00)80439-0. [DOI] [PubMed] [Google Scholar]
  51. Furukawa T., Morrow E. M., Li T., Davis F. C., Cepko C. L. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet. 1999 Dec;23(4):466–470. doi: 10.1038/70591. [DOI] [PubMed] [Google Scholar]
  52. Gage F. H. Mammalian neural stem cells. Science. 2000 Feb 25;287(5457):1433–1438. doi: 10.1126/science.287.5457.1433. [DOI] [PubMed] [Google Scholar]
  53. Gamse Joshua T., Shen Yu-Chi, Thisse Christine, Thisse Bernard, Raymond Pamela A., Halpern Marnie E., Liang Jennifer O. Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat Genet. 2001 Dec 20;30(1):117–121. doi: 10.1038/ng793. [DOI] [PubMed] [Google Scholar]
  54. Ghanbari H., Seo H. C., Fjose A., Brändli A. W. Molecular cloning and embryonic expression of Xenopus Six homeobox genes. Mech Dev. 2001 Mar;101(1-2):271–277. doi: 10.1016/s0925-4773(00)00572-4. [DOI] [PubMed] [Google Scholar]
  55. Goto K., Miki N., Kondo H. An immunohistochemical study of pinealocytes of chicks and some other lower vertebrates by means of visinin (retinal cone-specific protein)-immunoreactivity. Arch Histol Cytol. 1989;52 (Suppl):451–458. doi: 10.1679/aohc.52.suppl_451. [DOI] [PubMed] [Google Scholar]
  56. Gundy G. C., Wurst G. Z. Parietal eye-pineal morphology in lizards and its physiological implications. Anat Rec. 1976 Aug;185(4):419–431. doi: 10.1002/ar.1091850404. [DOI] [PubMed] [Google Scholar]
  57. Harris W. A. Cellular diversification in the vertebrate retina. Curr Opin Genet Dev. 1997 Oct;7(5):651–658. doi: 10.1016/s0959-437x(97)80013-5. [DOI] [PubMed] [Google Scholar]
  58. Harris W. A., Perron M. Molecular recapitulation: the growth of the vertebrate retina. Int J Dev Biol. 1998;42(3):299–304. [PubMed] [Google Scholar]
  59. Hattar S., Liao H. W., Takao M., Berson D. M., Yau K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002 Feb 8;295(5557):1065–1070. doi: 10.1126/science.1069609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Heisenberg C. P., Brand M., Jiang Y. J., Warga R. M., Beuchle D., van Eeden F. J., Furutani-Seiki M., Granato M., Haffter P., Hammerschmidt M. Genes involved in forebrain development in the zebrafish, Danio rerio. Development. 1996 Dec;123:191–203. doi: 10.1242/dev.123.1.191. [DOI] [PubMed] [Google Scholar]
  61. Heisenberg C. P., Houart C., Take-Uchi M., Rauch G. J., Young N., Coutinho P., Masai I., Caneparo L., Concha M. L., Geisler R. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev. 2001 Jun 1;15(11):1427–1434. doi: 10.1101/gad.194301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Hirunagi K., Ebihara S., Okano T., Takanaka Y., Fukada Y. Immunoelectron-microscopic investigation of the subcellular localization of pinopsin in the pineal organ of the chicken. Cell Tissue Res. 1997 Aug;289(2):235–241. doi: 10.1007/s004410050870. [DOI] [PubMed] [Google Scholar]
  63. Ishikawa M., Takao M., Washioka H., Tokunaga F., Watanabe H., Tonosaki A. Demonstration of rod and cone photoreceptors in the lamprey retina by freeze-replication and immunofluorescence. Cell Tissue Res. 1987 Aug;249(2):241–246. doi: 10.1007/BF00215506. [DOI] [PubMed] [Google Scholar]
  64. Jansen H. G., Sanyal S., De Grip W. J., Schalken J. J. Development and degeneration of retina in rds mutant mice: ultraimmunohistochemical localization of opsin. Exp Eye Res. 1987 Mar;44(3):347–361. doi: 10.1016/s0014-4835(87)80170-7. [DOI] [PubMed] [Google Scholar]
  65. Jenison G., Nolte J. The fine structure of the parietal retinas of Anolis carolinensis and Iguana iguana. Cell Tissue Res. 1979 Jun 27;199(2):235–247. doi: 10.1007/BF00236135. [DOI] [PubMed] [Google Scholar]
  66. Juillard M. T., Hartwig H. G., Collin J. P. The avian pineal organ. Distribution of endogenous monoamines; a fluorescence microscopic, microspectrofluorimetric and pharmacological study in the parakeet. J Neural Transm. 1977;40(4):269–287. doi: 10.1007/BF01257020. [DOI] [PubMed] [Google Scholar]
  67. Kappers J. A. The sensory innervation of the pineal organ in the lizard, Lacerta viridis, with remarks on its position in the trend of pineal phylogenetic structural and functional evolution. Z Zellforsch Mikrosk Anat. 1967;81(4):581–618. doi: 10.1007/BF00541016. [DOI] [PubMed] [Google Scholar]
  68. Kasahara T., Okano T., Yoshikawa T., Yamazaki K., Fukada Y. Rod-type transducin alpha-subunit mediates a phototransduction pathway in the chicken pineal gland. J Neurochem. 2000 Jul;75(1):217–224. doi: 10.1046/j.1471-4159.2000.0750217.x. [DOI] [PubMed] [Google Scholar]
  69. Kawakami A., Kimura-Kawakami M., Nomura T., Fujisawa H. Distributions of PAX6 and PAX7 proteins suggest their involvement in both early and late phases of chick brain development. Mech Dev. 1997 Aug;66(1-2):119–130. doi: 10.1016/s0925-4773(97)00097-x. [DOI] [PubMed] [Google Scholar]
  70. Kawamura S., Yokoyama S. Expression of visual and nonvisual opsins in American chameleon. Vision Res. 1997 Jul;37(14):1867–1871. doi: 10.1016/s0042-6989(96)00309-4. [DOI] [PubMed] [Google Scholar]
  71. Kobayashi Y., Ishikawa T., Hirayama J., Daiyasu H., Kanai S., Toh H., Fukuda I., Tsujimura T., Terada N., Kamei Y. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells. 2000 Sep;5(9):725–738. doi: 10.1046/j.1365-2443.2000.00364.x. [DOI] [PubMed] [Google Scholar]
  72. Kojima D., Mano H., Fukada Y. Vertebrate ancient-long opsin: a green-sensitive photoreceptive molecule present in zebrafish deep brain and retinal horizontal cells. J Neurosci. 2000 Apr 15;20(8):2845–2851. doi: 10.1523/JNEUROSCI.20-08-02845.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Korf H. W., Zimmerman N. H., Oksche A. Intrinsic neurons and neural connections of the pineal organ of the house sparrow, Passer domesticus, as revealed by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res. 1982;222(2):243–260. doi: 10.1007/BF00213210. [DOI] [PubMed] [Google Scholar]
  74. Kramm C. M., de Grip W. J., Korf H. W. Rod-opsin immunoreaction in the pineal organ of the pigmented mouse does not indicate the presence of a functional photopigment. Cell Tissue Res. 1993 Oct;274(1):71–78. doi: 10.1007/BF00327987. [DOI] [PubMed] [Google Scholar]
  75. Liu Y., Shen Y., Rest J. S., Raymond P. A., Zack D. J. Isolation and characterization of a zebrafish homologue of the cone rod homeobox gene. Invest Ophthalmol Vis Sci. 2001 Feb;42(2):481–487. [PubMed] [Google Scholar]
  76. Mano H., Kojima D., Fukada Y. Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Brain Res Mol Brain Res. 1999 Nov 10;73(1-2):110–118. doi: 10.1016/s0169-328x(99)00242-9. [DOI] [PubMed] [Google Scholar]
  77. Marquardt Till, Gruss Peter. Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci. 2002 Jan;25(1):32–38. doi: 10.1016/s0166-2236(00)02028-2. [DOI] [PubMed] [Google Scholar]
  78. Masai I., Heisenberg C. P., Barth K. A., Macdonald R., Adamek S., Wilson S. W. floating head and masterblind regulate neuronal patterning in the roof of the forebrain. Neuron. 1997 Jan;18(1):43–57. doi: 10.1016/s0896-6273(01)80045-3. [DOI] [PubMed] [Google Scholar]
  79. Matsushita A., Yoshikawa T., Okano T., Kasahara T., Fukada Y. Colocalization of pinopsin with two types of G-protein alpha-subunits in the chicken pineal gland. Cell Tissue Res. 2000 Feb;299(2):245–251. doi: 10.1007/s004419900145. [DOI] [PubMed] [Google Scholar]
  80. Max M., McKinnon P. J., Seidenman K. J., Barrett R. K., Applebury M. L., Takahashi J. S., Margolskee R. F. Pineal opsin: a nonvisual opsin expressed in chick pineal. Science. 1995 Mar 10;267(5203):1502–1506. doi: 10.1126/science.7878470. [DOI] [PubMed] [Google Scholar]
  81. Meiniel A., Collin J. P., Calas A. Incorporation du 5-hydroxytryptophane (5-HTP) dans l'organe pinéal du lacertilien Lacerta vivipara (J.): étude par radioautographie à haute résolution. C R Acad Sci Hebd Seances Acad Sci D. 1972 May 24;274(21):2897–2900. [PubMed] [Google Scholar]
  82. Meiniel A. L'épiphyse embryonnaire de Lacerta vivipara J. I. Différenciation des cellules de la lignée sensorielle (CLS). Le gradient de différenciation morphologique. J Neural Transm. 1976;39(1-2):139–174. doi: 10.1007/BF01248772. [DOI] [PubMed] [Google Scholar]
  83. Meiniel A. L'épiphyse embryonnaire de Lacerta vivipara J. II. Etude en microscopie électronique de l'incorporation du 5-hydroxytryptophane-3H (5-HTP-3H) au niveau des photorécepteurs rudimentaires secrétoires (PRS). Le gradient de différenciation biochimique. J Neural Transm. 1976;39(3):231–250. doi: 10.1007/BF01256512. [DOI] [PubMed] [Google Scholar]
  84. Meiniel A. Présence d'indolamines dans les organes pinéal et parapinéal de Lampetra planeri (Pétromyzontoïdes). C R Acad Sci Hebd Seances Acad Sci D. 1978 Sep 11;287(4):313–316. [PubMed] [Google Scholar]
  85. Meiniel A. Ultrastructure of serotonin-containing cells in the pineal organ of Lampetra planeri (Petromyzontidae). Cell Tissue Res. 1980;207(3):407–427. doi: 10.1007/BF00224617. [DOI] [PubMed] [Google Scholar]
  86. Meissl H., George S. R. Electrophysiological studies on neuronal transmission in the frog's photosensory pineal organ. The effect of amino acids and biogenic amines. Vision Res. 1984;24(12):1727–1734. doi: 10.1016/0042-6989(84)90003-8. [DOI] [PubMed] [Google Scholar]
  87. Meissl H. Photic regulation of pineal function. Analogies between retinal and pineal photoreception. Biol Cell. 1997 Dec;89(9):549–554. [PubMed] [Google Scholar]
  88. Meléndez-Ferro Miguel, Villar-Cheda Begoña, Abalo Xesús Manoel, Pérez-Costas Emma, Rodríguez-Muñoz Rolando, Degrip Willem J., Yáez Julián, Rodicio María Celina, Anadón Ramón. Early development of the retina and pineal complex in the sea lamprey: comparative immunocytochemical study. J Comp Neurol. 2002 Jan 14;442(3):250–265. doi: 10.1002/cne.10090. [DOI] [PubMed] [Google Scholar]
  89. Miyamoto Y., Sancar A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6097–6102. doi: 10.1073/pnas.95.11.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Moutsaki P., Bellingham J., Soni B. G., David-Gray Z. K., Foster R. G. Sequence, genomic structure and tissue expression of carp (Cyprinus carpio L.) vertebrate ancient (VA) opsin. FEBS Lett. 2000 May 19;473(3):316–322. doi: 10.1016/s0014-5793(00)01550-7. [DOI] [PubMed] [Google Scholar]
  91. OKSCHE A. SURVEY OF THE DEVELOPMENT AND COMPARATIVE MORPHOLOGY OF THE PINEAL ORGAN. Prog Brain Res. 1965;10:3–29. doi: 10.1016/s0079-6123(08)63445-7. [DOI] [PubMed] [Google Scholar]
  92. Ohshima K., Hirai S., Nishida A., Hiramatsu K. Ultrastructure and serotonin immunocytochemistry of the parietal-pineal complex in the Japanese grass lizard, Takydromus tachydromoides. Tissue Cell. 1999 Apr;31(2):126–137. doi: 10.1054/tice.1999.0031. [DOI] [PubMed] [Google Scholar]
  93. Ohshima K., Hiramatsu K. Ultrastructural study of post-hatching development in the pineal gland of the Japanese quail. J Vet Med Sci. 1993 Dec;55(6):945–950. doi: 10.1292/jvms.55.945. [DOI] [PubMed] [Google Scholar]
  94. Ohshima K., Matsuo S. Cytodifferentiation of the chick pineal gland, with special reference to the photosensory and secretory elements. J Pineal Res. 1988;5(4):397–410. doi: 10.1111/j.1600-079x.1988.tb00888.x. [DOI] [PubMed] [Google Scholar]
  95. Ohshima K., Matsuo S. Immunohistochemical localization of serotonin in the pineal gland of the chicken during post-hatching development in relation to light-dark cycle. Anat Anz. 1991;173(2):65–72. [PubMed] [Google Scholar]
  96. Oishi T., Yamao M., Kondo C., Haida Y., Masuda A., Tamotsu S. Multiphotoreceptor and multioscillator system in avian circadian organization. Microsc Res Tech. 2001 Apr 1;53(1):43–47. doi: 10.1002/jemt.1067. [DOI] [PubMed] [Google Scholar]
  97. Okano K., Okano T., Yoshikawa T., Masuda A., Fukada Y., Oishi T. Diversity of opsin immunoreactivities in the extraretinal tissues of four anuran amphibians. J Exp Zool. 2000 Feb 1;286(2):136–142. doi: 10.1002/(sici)1097-010x(20000201)286:2<136::aid-jez5>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  98. Okano T., Takanaka Y., Nakamura A., Hirunagi K., Adachi A., Ebihara S., Fukada Y. Immunocytochemical identification of pinopsin in pineal glands of chicken and pigeon. Brain Res Mol Brain Res. 1997 Oct 15;50(1-2):190–196. doi: 10.1016/s0169-328x(97)00184-8. [DOI] [PubMed] [Google Scholar]
  99. Okano T., Yoshizawa T., Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature. 1994 Nov 3;372(6501):94–97. doi: 10.1038/372094a0. [DOI] [PubMed] [Google Scholar]
  100. Oksche A., Kirschstein H. Elektronenmikroskopische Untersuchungen am Pinealorgan von Passerr domesticu. Z Zellforsch Mikrosk Anat. 1969;102(2):214–241. [PubMed] [Google Scholar]
  101. Oksche A., Kirschstein H. Unterschiedlicher elektronenmikroskopischer Feinbau der Sinneszellen im Parietalauge und im Pinealorgam (Epiphysis cerebri) der Lacertilia. Ein Beitrag zum Epiphysenproblem. Z Zellforsch Mikrosk Anat. 1968;87(2):159–192. [PubMed] [Google Scholar]
  102. Oksche A., Morita Y., Vaupel-von-Harnack M. Zur Feinstruktur und Funktion des Pinealorgans der Taube (Columba livia) Z Zellforsch Mikrosk Anat. 1969;102(1):1–30. [PubMed] [Google Scholar]
  103. Oksche A., Vaupel-Von Harnack M. Elektronenmikroskopische Untersuchungen zur Frage der Sinneszellen im Pinealorgan der Vögel. Z Zellforsch Mikrosk Anat. 1966;69:41–60. [PubMed] [Google Scholar]
  104. Oksche A. Zur Frage extraretinaler Photorezeptoren im Pinealorgan der Vögel. Arch Anat Histol Embryol. 1968;51(5):495–507. [PubMed] [Google Scholar]
  105. Omura Y. Ultrastructural study of embryonic and post-hatching development in the pineal organ of the chicken (brown leghorn, gallus demosticus). Cell Tissue Res. 1977 Sep 26;183(2):255–271. doi: 10.1007/BF00226623. [DOI] [PubMed] [Google Scholar]
  106. Ostholm T., Ekström P., Bruun A., van Veen T. Temporal disparity in pineal and retinal ontogeny. Brain Res. 1988 Jul 1;470(1):1–13. doi: 10.1016/0165-3806(88)90197-6. [DOI] [PubMed] [Google Scholar]
  107. Owman C., Rüdeberg C. Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine. Z Zellforsch Mikrosk Anat. 1970;107(4):522–550. doi: 10.1007/BF00335439. [DOI] [PubMed] [Google Scholar]
  108. Owman C., Rüdeberg C., Ueck M. Fluoreszenzmikroskopischer Nachweis biogener Monoamine in der Epiphysis cerebri von Rana esculenta und Rana pipiens. Z Zellforsch Mikrosk Anat. 1970;111(4):550–558. doi: 10.1007/BF00330931. [DOI] [PubMed] [Google Scholar]
  109. Papermaster D. S. Preparation of antibodies to rhodopsin and the large protein of rod outer segments. Methods Enzymol. 1982;81:240–246. doi: 10.1016/s0076-6879(82)81037-9. [DOI] [PubMed] [Google Scholar]
  110. Petit A. L'épiphyse d'un serpent: Tropidonotus natrix L. I. Etude structurale et ultrastructurale. Z Zellforsch Mikrosk Anat. 1971;120(1):94–119. [PubMed] [Google Scholar]
  111. Pevet P., Ariëns Kappers J., Voûte A. M. Morphologic evidence for differentiation of pinealocytes from photoreceptor cells in the adult noctule bat (Nyctalus noctula, Schreber). Cell Tissue Res. 1977 Jul 26;182(1):99–109. doi: 10.1007/BF00222058. [DOI] [PubMed] [Google Scholar]
  112. Pevet P., Collin J. P. Les pinéalocytes de mammifère: diversité, homologies, origine, Etude chez la taupe adulte (Talpa europaea L.) J Ultrastruct Res. 1976 Oct;57(1):22–31. doi: 10.1016/s0022-5320(76)80051-2. [DOI] [PubMed] [Google Scholar]
  113. Philp A. R., Bellingham J., Garcia-Fernandez J., Foster R. G. A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Lett. 2000 Feb 25;468(2-3):181–188. doi: 10.1016/s0014-5793(00)01217-5. [DOI] [PubMed] [Google Scholar]
  114. Philp A. R., Garcia-Fernandez J. M., Soni B. G., Lucas R. J., Bellingham J., Foster R. G. Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar). J Exp Biol. 2000 Jun;203(Pt 12):1925–1936. doi: 10.1242/jeb.203.12.1925. [DOI] [PubMed] [Google Scholar]
  115. Pombal M. A., Yáez J., Marín O., González A., Anadón R. Cholinergic and GABAergic neuronal elements in the pineal organ of lampreys, and tract-tracing observations of differential connections of pinealofugal neurons. Cell Tissue Res. 1999 Feb;295(2):215–223. doi: 10.1007/s004410051227. [DOI] [PubMed] [Google Scholar]
  116. Provencio I., Jiang G., De Grip W. J., Hayes W. P., Rollag M. D. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):340–345. doi: 10.1073/pnas.95.1.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Pévet P. The pineal gland of the mole (Talpa europaea L.). Cell Tissue Res. 1980;206(3):417–430. doi: 10.1007/BF00237971. [DOI] [PubMed] [Google Scholar]
  118. QUAY W. B. HISTOLOGICAL STRUCTURE AND CYTOLOGY OF THE PINEAL ORGAN IN BIRDS AND MAMMALS. Prog Brain Res. 1965;10:49–86. doi: 10.1016/s0079-6123(08)63447-0. [DOI] [PubMed] [Google Scholar]
  119. Quay W. B., Kappers J. A., Jongkind J. F. Innervation and fluorescence histochemistry of monoamines in the pineal organ of a snake (Natrix natrix). J Neurovisc Relat. 1968;31(1):11–25. doi: 10.1007/BF02239174. [DOI] [PubMed] [Google Scholar]
  120. Quay W. B., Renzoni A., Eakin R. M. [The ultrastructure of the pineal body in the parakeet Melopsittacus undulatus with special reference to cellular types and their functions]. Riv Biol. 1968 Oct-Dec;61(4):371–393. [PubMed] [Google Scholar]
  121. Robinson J., Schmitt E. A., Dowling J. E. Temporal and spatial patterns of opsin gene expression in zebrafish (Danio rerio). Vis Neurosci. 1995 Sep-Oct;12(5):895–906. doi: 10.1017/s0952523800009457. [DOI] [PubMed] [Google Scholar]
  122. Rubenstein J. L., Shimamura K., Martinez S., Puelles L. Regionalization of the prosencephalic neural plate. Annu Rev Neurosci. 1998;21:445–477. doi: 10.1146/annurev.neuro.21.1.445. [DOI] [PubMed] [Google Scholar]
  123. Röhlich P., Szél A. Binding sites of photoreceptor-specific antibodies COS-1, OS-2 and AO. Curr Eye Res. 1993 Oct;12(10):935–944. doi: 10.3109/02713689309020400. [DOI] [PubMed] [Google Scholar]
  124. Sato T. Sensory and endocrine characteristics of the avian pineal organ. Microsc Res Tech. 2001 Apr 1;53(1):2–11. doi: 10.1002/jemt.1063. [DOI] [PubMed] [Google Scholar]
  125. Sato T., Wake K. Innervation of the avian pineal organ. A comparative study. Cell Tissue Res. 1983;233(2):237–264. doi: 10.1007/BF00238294. [DOI] [PubMed] [Google Scholar]
  126. Sato T., Wake K. Regressive post-hatching development of acetylcholinesterase-positive neurons in the pineal organs of Coturnix coturnix japonica and Gallus gallus. Cell Tissue Res. 1984;237(2):269–275. doi: 10.1007/BF00217145. [DOI] [PubMed] [Google Scholar]
  127. Sauka-Spengler T., Baratte B., Shi L., Mazan S. Structure and expression of an Otx5-related gene in the dogfish Scyliorhinus canicula: evidence for a conserved role of Otx5 and Crxgenes in the specification of photoreceptors. Dev Genes Evol. 2001 Nov 20;211(11):533–544. doi: 10.1007/s00427-001-0191-2. [DOI] [PubMed] [Google Scholar]
  128. Shichida Y., Taniguchi Y., Kuwata O., Fukada Y., Yoshizawa T., Horiuchi S., Takeichi M. Monoclonal antibodies to chicken iodopsin. Exp Eye Res. 1989 Feb;48(2):281–293. doi: 10.1016/s0014-4835(89)80077-6. [DOI] [PubMed] [Google Scholar]
  129. Soni B. G., Philp A. R., Foster R. G., Knox B. E. Novel retinal photoreceptors. Nature. 1998 Jul 2;394(6688):27–28. doi: 10.1038/27794. [DOI] [PubMed] [Google Scholar]
  130. Tamotsu S., Korf H. W., Morita Y., Oksche A. Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Cell Tissue Res. 1990 Nov;262(2):205–216. doi: 10.1007/BF00309875. [DOI] [PubMed] [Google Scholar]
  131. Tosini G., Bertolucci C., Foà A. The circadian system of reptiles: a multioscillatory and multiphotoreceptive system. Physiol Behav. 2001 Mar;72(4):461–471. doi: 10.1016/s0031-9384(00)00423-6. [DOI] [PubMed] [Google Scholar]
  132. Tosini G., Menaker M. Multioscillatory circadian organization in a vertebrate, iguana iguana. J Neurosci. 1998 Feb 1;18(3):1105–1114. doi: 10.1523/JNEUROSCI.18-03-01105.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Ueck M. Fluoreszenzmikroskopische und elektronmikroskopische Untersuchungen am Pinealorgan verschiedener Vogelarten. Z Zellforsch Mikrosk Anat. 1973 Feb 9;137(1):37–62. [PubMed] [Google Scholar]
  134. Ueck M., Kobayashi H. Vergleichende Untersuchungen über acetylcholinesterase-haltige Neurone im Pinealorgan der Vögel. Z Zellforsch Mikrosk Anat. 1972;129(1):140–160. [PubMed] [Google Scholar]
  135. Ueck M. Ultrastruktur des pinealen Sinnesapparates bei einigen Pipidae und Discoglossidae. Z Zellforsch Mikrosk Anat. 1968;92(3):452–476. [PubMed] [Google Scholar]
  136. Ueck M. Vergleichende Betrachtungen zur neuroendokrinen Aktivität des Pinealorgans. Fortschr Zool. 1974;22(2-3):167–203. [PubMed] [Google Scholar]
  137. Ueck M. Weitere Untersuchungen zur Feinstruktur und Innervation des Pinealorgans von Passer domesticus L. Z Zellforsch Mikrosk Anat. 1970;105(2):276–302. [PubMed] [Google Scholar]
  138. VIVIEN J. H. ULTRASTRUCTURE DES CONSTITUANTS DE L''EPIPHYSE DE TROPIDONOTUS NATRIX L. C R Hebd Seances Acad Sci. 1964 Mar 23;258:3370–3372. [PubMed] [Google Scholar]
  139. Vigh-Teichmann I., Vigh B. Opsin immunocytochemical characterization of different types of photoreceptors in the frog pineal organ. J Pineal Res. 1990;8(4):323–333. doi: 10.1111/j.1600-079x.1990.tb00892.x. [DOI] [PubMed] [Google Scholar]
  140. Vigh-Teichmann I., Vigh B., Wirtz G. H. Immunoelectron microscopy of rhodopsin and vitamin A in the pineal organ and lateral eye of the lamprey. Exp Biol. 1989;48(4):203–213. [PubMed] [Google Scholar]
  141. Vigh B., Vigh-Teichmann I., Debreceni K., Takács J. Similar fine structural localization of immunoreactive glutamate in the frog pineal complex and retina. Arch Histol Cytol. 1995 Mar;58(1):37–44. doi: 10.1679/aohc.58.37. [DOI] [PubMed] [Google Scholar]
  142. Vigh B., Vigh-Teichmann I. Development of the photoreceptor outer segment-like cilia of the CSF-contacting pinealocytes of the ferret (Putorius furo). Arch Histol Cytol. 1993 Dec;56(5):485–493. doi: 10.1679/aohc.56.485. [DOI] [PubMed] [Google Scholar]
  143. Vigh B., Vigh-Teichmann I. Three types of photoreceptors in the pineal and frontal organs of frogs: ultrastructure and opsin immunoreactivity. Arch Histol Jpn. 1986 Dec;49(5):495–518. doi: 10.1679/aohc.49.495. [DOI] [PubMed] [Google Scholar]
  144. Vignali R., Colombetti S., Lupo G., Zhang W., Stachel S., Harland R. M., Barsacchi G. Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis. Mech Dev. 2000 Aug;96(1):3–13. doi: 10.1016/s0925-4773(00)00367-1. [DOI] [PubMed] [Google Scholar]
  145. Vivien-Roels B. Ultrastructure, innervation et fonction de l'épiphyse chez les chéloniens. Z Zellforsch Mikrosk Anat. 1970;104(3):429–448. [PubMed] [Google Scholar]
  146. Voisin P., Guerlotté J., Collin J. P. An antiserum against chicken hydroxyindole-O-methyltransferase reacts with the enzyme from pineal gland and retina and labels pineal modified photoreceptors. Brain Res. 1988 Aug;464(1):53–61. doi: 10.1016/0169-328x(88)90018-6. [DOI] [PubMed] [Google Scholar]
  147. Vígh B., Debreceni K., Fejér Z., Vígh-Teichmann I. Immunoreactive excitatory amino acids in the parietal eye of lizards, a comparison with the pineal organ and retina. Cell Tissue Res. 1997 Feb;287(2):275–283. doi: 10.1007/s004410050752. [DOI] [PubMed] [Google Scholar]
  148. Vígh B., Röhlich P., Görcs T., Manzano e Silva M. J., Szél A., Fejér Z., Vígh-Teichmann I. The pineal organ as a folded retina: immunocytochemical localization of opsins. Biol Cell. 1998 Dec;90(9):653–659. [PubMed] [Google Scholar]
  149. Wartenberg H., Baumgarten H. G. Untersuchungen zur fluorescenz- und elektronenmikroskopischen Darstellung von 5-Hydroxytryptamin (5-HT) im Pineal-Organ von Lacerta viridis und L. muralis. Z Anat Entwicklungsgesch. 1969;128(3):185–210. [PubMed] [Google Scholar]
  150. Watanabe K., Aoyama H., Tamamaki N., Sonomura T., Okada T. S., Eguchi G., Nojyo Y. An embryonic pineal body as a multipotent system in cell differentiation. Development. 1988 May;103(1):17–26. [PubMed] [Google Scholar]
  151. Watanabe K., Aoyama H., Tamamaki N., Yasujima M., Nojyo Y., Ueda Y., Okada T. S. Oculopotency of embryonic quail pineals as revealed by cell culture studies. Cell Differ. 1985 Jun;16(4):251–257. doi: 10.1016/0045-6039(85)90575-5. [DOI] [PubMed] [Google Scholar]
  152. Watanabe K., Araki M., Iwasaki H. The embryonic pineal body as a multipotent organ. Microsc Res Tech. 1992 May 1;21(3):218–226. doi: 10.1002/jemt.1070210305. [DOI] [PubMed] [Google Scholar]
  153. Whitmore D., Foulkes N. S., Strähle U., Sassone-Corsi P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci. 1998 Dec;1(8):701–707. doi: 10.1038/3703. [DOI] [PubMed] [Google Scholar]
  154. Yamao M., Araki M., Okano T., Fukada Y., Oishi T. Differentiation of pinopsin-immunoreactive cells in the developing quail pineal organ: an in-vivo and in-vitro immunohistochemical study. Cell Tissue Res. 1999 Jun;296(3):667–671. doi: 10.1007/s004410051326. [DOI] [PubMed] [Google Scholar]
  155. Yoshikawa T., Yashiro Y., Oishi T., Kokame K., Fukada Y. Immunoreactivities to rhodopsin and rod/cone transducin antisera in the retina, pineal complex and deep brain of the bullfrog, Rana catesbeiana. Zoolog Sci. 1994 Oct;11(5):675–680. [PubMed] [Google Scholar]
  156. Yáez J., Pombal M. A., Anadón R. Afferent and efferent connections of the parapineal organ in lampreys: a tract tracing and immunocytochemical study. J Comp Neurol. 1999 Jan 11;403(2):171–189. doi: 10.1002/(sici)1096-9861(19990111)403:2<171::aid-cne3>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  157. Zhu X., Craft C. M. Modulation of CRX transactivation activity by phosducin isoforms. Mol Cell Biol. 2000 Jul;20(14):5216–5226. doi: 10.1128/mcb.20.14.5216-5226.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Zimmerman B. L., Tso M. O. Morphologic evidence of photoreceptor differentiation of pinealocytes in the neonatal rat. J Cell Biol. 1975 Jul;66(1):60–75. doi: 10.1083/jcb.66.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Zylka M. J., Shearman L. P., Weaver D. R., Reppert S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998 Jun;20(6):1103–1110. doi: 10.1016/s0896-6273(00)80492-4. [DOI] [PubMed] [Google Scholar]
  160. van der Horst G. T., Muijtjens M., Kobayashi K., Takano R., Kanno S., Takao M., de Wit J., Verkerk A., Eker A. P., van Leenen D. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999 Apr 15;398(6728):627–630. doi: 10.1038/19323. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES