Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Oct 29;358(1438):1625–1641. doi: 10.1098/rstb.2003.1291

Scaling properties and symmetrical patterns in the epidemiology of rotavirus infection.

Marco V José 1, Ruth F Bishop 1
PMCID: PMC1693266  PMID: 14561323

Abstract

The rich epidemiological database of the incidence of rotavirus, as a cause of severe diarrhoea in young children, coupled with knowledge of the natural history of the infection, can make this virus a paradigm for studies of epidemic dynamics. The cyclic recurrence of childhood rotavirus epidemics in unvaccinated populations provides one of the best documented phenomena in population dynamics. This paper makes use of epidemiological data on rotavirus infection in young children admitted to hospital in Melbourne, Australia from 1977 to 2000. Several mathematical methods were used to characterize the overall dynamics of rotavirus infections as a whole and individually as serotypes G1, G2, G3, G4 and G9. These mathematical methods are as follows: seasonal autoregressive integrated moving-average (SARIMA) models, power spectral density (PSD), higher-order spectral analysis (HOSA) (bispectrum estimation and quadratic phase coupling (QPC)), detrended fluctuation analysis (DFA), wavelet analysis (WA) and a surrogate data analysis technique. Each of these techniques revealed different dynamic aspects of rotavirus epidemiology. In particular, we confirm the existence of an annual, biannual and a quinquennial period but additionally we found other embedded cycles (e.g. ca. 3 years). There seems to be an overall unique geometric and dynamic structure of the data despite the apparent changes in the dynamics of the last years. The inherent dynamics seems to be conserved regardless of the emergence of new serotypes, the re-emergence of old serotypes or the transient disappearance of a particular serotype. More importantly, the dynamics of all serotypes is multiple synchronized so that they behave as a single entity at the epidemic level. Overall, the whole dynamics follow a scale-free power-law fractal scaling behaviour. We found that there are three different scaling regions in the time-series, suggesting that processes influencing the epidemic dynamics of rotavirus over less than 12 months differ from those that operate between 1 and ca. 3 years, as well as those between 3 and ca. 5 years. To discard the possibility that the observed patterns could be due to artefacts, we applied a surrogate data analysis technique which enabled us to discern if only random components or linear features of the incidence of rotavirus contribute to its dynamics. The global dynamics of the epidemic is portrayed by wavelet-based incidence analysis. The resulting wavelet transform of the incidence of rotavirus crisply reveals a repeating pattern over time that looks similar on many scales (a property called self-similarity). Both the self-similar behaviour and the absence of a single characteristic scale of the power-law fractal-like scaling of the incidence of rotavirus infection imply that there is not a universal inherently more virulent serotype to which severe gastroenteritis can uniquely be ascribed.

Full Text

The Full Text of this article is available as a PDF (587.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson J. S., Baker C. J., Fisher M. C., Gerber M. A., Meissner H. C., Murray D. L., Overturf G. D., Prober C. G., Rennels M. B., Saari T. N. Possible association of intussusception with rotavirus vaccination. American Academy of Pediatrics. Committee on Infectious Diseases. Pediatrics. 1999 Sep;104(3 Pt 1):575–575. [PubMed] [Google Scholar]
  2. Ansari S. A., Springthorpe V. S., Sattar S. A. Survival and vehicular spread of human rotaviruses: possible relation to seasonality of outbreaks. Rev Infect Dis. 1991 May-Jun;13(3):448–461. doi: 10.1093/clinids/13.3.448. [DOI] [PubMed] [Google Scholar]
  3. Barnes G. L., Uren E., Stevens K. B., Bishop R. F. Etiology of acute gastroenteritis in hospitalized children in Melbourne, Australia, from April 1980 to March 1993. J Clin Microbiol. 1998 Jan;36(1):133–138. doi: 10.1128/jcm.36.1.133-138.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bern C., Unicomb L., Gentsch J. R., Banul N., Yunus M., Sack R. B., Glass R. I. Rotavirus diarrhea in Bangladeshi children: correlation of disease severity with serotypes. J Clin Microbiol. 1992 Dec;30(12):3234–3238. doi: 10.1128/jcm.30.12.3234-3238.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bishop R. F., Unicomb L. E., Barnes G. L. Epidemiology of rotavirus serotypes in Melbourne, Australia, from 1973 to 1989. J Clin Microbiol. 1991 May;29(5):862–868. doi: 10.1128/jcm.29.5.862-868.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brandt C. D., Kim H. W., Rodriguez W. J., Arrobio J. O., Jeffries B. C., Stallings E. P., Lewis C., Miles A. J., Chanock R. M., Kapikian A. Z. Pediatric viral gastroenteritis during eight years of study. J Clin Microbiol. 1983 Jul;18(1):71–78. doi: 10.1128/jcm.18.1.71-78.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cascio A., Vizzi E., Alaimo C., Arista S. Rotavirus gastroenteritis in Italian children: can severity of symptoms be related to the infecting virus? Clin Infect Dis. 2001 Mar 23;32(8):1126–1132. doi: 10.1086/319744. [DOI] [PubMed] [Google Scholar]
  8. Estes M. K., Cohen J. Rotavirus gene structure and function. Microbiol Rev. 1989 Dec;53(4):410–449. doi: 10.1128/mr.53.4.410-449.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grenfell B. T., Bjørnstad O. N., Kappey J. Travelling waves and spatial hierarchies in measles epidemics. Nature. 2001 Dec 13;414(6865):716–723. doi: 10.1038/414716a. [DOI] [PubMed] [Google Scholar]
  10. Heneghan C, McDarby G. Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Nov;62(5 Pt A):6103–6110. doi: 10.1103/physreve.62.6103. [DOI] [PubMed] [Google Scholar]
  11. José M. V., Bobadilla J. R., Bishop R. F. Oscillatory fluctuations in the incidence of rotavirus infections by serotypes 1, 2, 3, and 4. J Diarrhoeal Dis Res. 1996 Sep;14(3):194–200. [PubMed] [Google Scholar]
  12. José M. V., Bobadilla J. R. Epidemiological model of diarrhoeal diseases and its application in prevention and control. Vaccine. 1994 Feb;12(2):109–116. doi: 10.1016/0264-410x(94)90047-7. [DOI] [PubMed] [Google Scholar]
  13. LeBaron C. W., Lew J., Glass R. I., Weber J. M., Ruiz-Palacios G. M. Annual rotavirus epidemic patterns in North America. Results of a 5-year retrospective survey of 88 centers in Canada, Mexico, and the United States. Rotavirus Study Group. JAMA. 1990 Aug 22;264(8):983–988. doi: 10.1001/jama.264.8.983. [DOI] [PubMed] [Google Scholar]
  14. Liljeros F., Edling C. R., Amaral L. A., Stanley H. E., Aberg Y. The web of human sexual contacts. Nature. 2001 Jun 21;411(6840):907–908. doi: 10.1038/35082140. [DOI] [PubMed] [Google Scholar]
  15. Lloyd A. L., May R. M. Epidemiology. How viruses spread among computers and people. Science. 2001 May 18;292(5520):1316–1317. doi: 10.1126/science.1061076. [DOI] [PubMed] [Google Scholar]
  16. Masendycz P. J., Unicomb L. E., Kirkwood C. D., Bishop R. F. Rotavirus serotypes causing severe acute diarrhea in young children in six Australian cities, 1989 to 1992. J Clin Microbiol. 1994 Sep;32(9):2315–2317. doi: 10.1128/jcm.32.9.2315-2317.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Masendycz P., Bogdanovic-Sakran N., Kirkwood C., Bishop R., Barnes G. Report of the Australian Rotavirus Surveillance Program, 2000/2001. Commun Dis Intell Q Rep. 2001 Aug;25(3):143–146. [PubMed] [Google Scholar]
  18. Padilla-Noriega L., Arias C. F., López S., Puerto F., Snodgrass D. R., Taniguchi K., Greenberg H. B. Diversity of rotavirus serotypes in Mexican infants with gastroenteritis. J Clin Microbiol. 1990 Jun;28(6):1114–1119. doi: 10.1128/jcm.28.6.1114-1119.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pastor-Satorras R., Vespignani A. Epidemic dynamics and endemic states in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May 22;63(6 Pt 2):066117–066117. doi: 10.1103/PhysRevE.63.066117. [DOI] [PubMed] [Google Scholar]
  20. Pastor-Satorras R., Vespignani A. Epidemic spreading in scale-free networks. Phys Rev Lett. 2001 Apr 2;86(14):3200–3203. doi: 10.1103/PhysRevLett.86.3200. [DOI] [PubMed] [Google Scholar]
  21. Peng C-K, Buldyrev S. V., Goldberger A. L., Havlin S., Simons M., Stanley H. E. Finite-size effects on long-range correlations: implications for analyzing DNA sequences. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 May;47(5):3730–3733. doi: 10.1103/physreve.47.3730. [DOI] [PubMed] [Google Scholar]
  22. Peng C. K., Buldyrev S. V., Havlin S., Simons M., Stanley H. E., Goldberger A. L. Mosaic organization of DNA nucleotides. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):1685–1689. doi: 10.1103/physreve.49.1685. [DOI] [PubMed] [Google Scholar]
  23. Peng C. K., Havlin S., Stanley H. E., Goldberger A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82–87. doi: 10.1063/1.166141. [DOI] [PubMed] [Google Scholar]
  24. Raúl Velázquez F., Calva J. J., Lourdes Guerrero M., Mass D., Glass R. I., Pickering L. K., Ruiz-Palacios G. M. Cohort study of rotavirus serotype patterns in symptomatic and asymptomatic infections in Mexican children. Pediatr Infect Dis J. 1993 Jan;12(1):54–61. doi: 10.1097/00006454-199301000-00013. [DOI] [PubMed] [Google Scholar]
  25. Rhodes C. J., Anderson R. M. Power laws governing epidemics in isolated populations. Nature. 1996 Jun 13;381(6583):600–602. doi: 10.1038/381600a0. [DOI] [PubMed] [Google Scholar]
  26. Schlesinger M. F. Fractal time and 1/f noise in complex systems. Ann N Y Acad Sci. 1987;504:214–228. doi: 10.1111/j.1749-6632.1987.tb48734.x. [DOI] [PubMed] [Google Scholar]
  27. Woods P. A., Gentsch J., Gouvea V., Mata L., Santosham M., Bai Z. S., Urasawa S., Glass R. I. Distribution of serotypes of human rotavirus in different populations. J Clin Microbiol. 1992 Apr;30(4):781–785. doi: 10.1128/jcm.30.4.781-785.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. de Zoysa I., Feachem R. G. Interventions for the control of diarrhoeal diseases among young children: rotavirus and cholera immunization. Bull World Health Organ. 1985;63(3):569–583. [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES