Abstract
Continental aquatic systems from rivers to the coastal zone are considered within two perspectives: (i) as a major link between the atmosphere, pedosphere, biosphere and oceans within the Earth system with its Holocene dynamics, and (ii) as water and aquatic biota resources progressively used and transformed by humans. Human pressures have now reached a state where the continental aquatic systems can no longer be considered as being controlled by only Earth system processes, thus defining a new era, the Anthropocene. Riverine changes, now observed at the global scale, are described through a first set of syndromes (flood regulation, fragmentation, sediment imbalance, neo-arheism, salinization, chemical contamination, acidification, eutrophication and microbial contamination) with their related causes and symptoms. These syndromes have direct influences on water uses, either positive or negative. They also modify some Earth system key functions such as sediment, water, nutrient and carbon balances, greenhouse gas emissions and aquatic biodiversity. Evolution of river syndromes over the past 2000 years is complex: it depends upon the stages of regional human development and on natural conditions, as illustrated here for the chemical contamination syndrome. River damming, eutrophication and generalized decrease of river flow due to irrigation are some of the other global features of river changes. Future management of river systems should also consider these long-term impacts on the Earth system.
Full Text
The Full Text of this article is available as a PDF (246.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cheng F. P., Gadella B. M., Voorhout W. F., Fazeli A., Bevers M. M., Colenbrander B. Progesterone-induced acrosome reaction in stallion spermatozoa is mediated by a plasma membrane progesterone receptor. Biol Reprod. 1998 Oct;59(4):733–742. doi: 10.1095/biolreprod59.4.733. [DOI] [PubMed] [Google Scholar]
- Colwell R. R. Global climate and infectious disease: the cholera paradigm. Science. 1996 Dec 20;274(5295):2025–2031. doi: 10.1126/science.274.5295.2025. [DOI] [PubMed] [Google Scholar]
- Dynesius M., Nilsson C. Fragmentation and flow regulation of river systems in the northern third of the world. Science. 1994 Nov 4;266(5186):753–762. doi: 10.1126/science.266.5186.753. [DOI] [PubMed] [Google Scholar]
- Kideys Ahmet E. Ecology. Fall and rise of the Black Sea ecosystem. Science. 2002 Aug 30;297(5586):1482–1484. doi: 10.1126/science.1073002. [DOI] [PubMed] [Google Scholar]
- Macdonal R. W., Barrie L. A., Bidleman T. F., Diamond M. L., Gregor D. J., Semkin R. G., Strachan W. M., Li Y. F., Wania F., Alaee M. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ. 2000 Jun 1;254(2-3):93–234. doi: 10.1016/s0048-9697(00)00434-4. [DOI] [PubMed] [Google Scholar]
- Nixon Scott W. Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river? Ambio. 2003 Feb;32(1):30–39. doi: 10.1579/0044-7447-32.1.30. [DOI] [PubMed] [Google Scholar]
- Nriagu J. O., Pacyna J. M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature. 1988 May 12;333(6169):134–139. doi: 10.1038/333134a0. [DOI] [PubMed] [Google Scholar]
- Pascual Mercedes, Bouma Menno J., Dobson Andrew P. Cholera and climate: revisiting the quantitative evidence. Microbes Infect. 2002 Feb;4(2):237–245. doi: 10.1016/s1286-4579(01)01533-7. [DOI] [PubMed] [Google Scholar]
- Peterson Bruce J., Holmes Robert M., McClelland James W., Vörösmarty Charles J., Lammers Richard B., Shiklomanov Alexander I., Shiklomanov Igor A., Rahmstorf Stefan. Increasing river discharge to the Arctic Ocean. Science. 2002 Dec 13;298(5601):2171–2173. doi: 10.1126/science.1077445. [DOI] [PubMed] [Google Scholar]
- Pimentel D., Harvey C., Resosudarmo P., Sinclair K., Kurz D., McNair M., Crist S., Shpritz L., Fitton L., Saffouri R., Blair R. Environmental and economic costs of soil erosion and conservation benefits. Science. 1995 Feb 24;267(5201):1117–1123. doi: 10.1126/science.267.5201.1117. [DOI] [PubMed] [Google Scholar]
- Pouria S., de Andrade A., Barbosa J., Cavalcanti R. L., Barreto V. T., Ward C. J., Preiser W., Poon G. K., Neild G. H., Codd G. A. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet. 1998 Jul 4;352(9121):21–26. doi: 10.1016/s0140-6736(97)12285-1. [DOI] [PubMed] [Google Scholar]
- Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Gloor RFM, Kramers JD, Reese S, Van Der Knaap WO History of atmospheric lead deposition since 12,370 (14)C yr BP from a peat bog, jura mountains, switzerland . Science. 1998 Sep 11;281(5383):1635–1640. doi: 10.1126/science.281.5383.1635. [DOI] [PubMed] [Google Scholar]
- Tilman D., Fargione J., Wolff B., D'Antonio C., Dobson A., Howarth R., Schindler D., Schlesinger W. H., Simberloff D., Swackhamer D. Forecasting agriculturally driven global environmental change. Science. 2001 Apr 13;292(5515):281–284. doi: 10.1126/science.1057544. [DOI] [PubMed] [Google Scholar]
- Vörösmarty C. J., Green P., Salisbury J., Lammers R. B. Global water resources: vulnerability from climate change and population growth. Science. 2000 Jul 14;289(5477):284–288. doi: 10.1126/science.289.5477.284. [DOI] [PubMed] [Google Scholar]
- Wolman M. G. The nation's rivers. Science. 1971 Nov 26;174(4012):905–918. doi: 10.1126/science.174.4012.905. [DOI] [PubMed] [Google Scholar]