Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Jan 29;359(1441):49–59. doi: 10.1098/rstb.2003.1364

Interplay between DNA replication, recombination and repair based on the structure of RecG helicase.

Geoffrey S Briggs 1, Akeel A Mahdi 1, Geoffrey R Weller 1, Qin Wen 1, Robert G Lloyd 1
PMCID: PMC1693295  PMID: 15065656

Abstract

Recent studies in Escherichia coli indicate that the interconversion of DNA replication fork and Holliday junction structures underpins chromosome duplication and helps secure faithful transmission of the genome from one generation to the next. It facilitates interplay between DNA replication, recombination and repair, and provides means to rescue replication forks stalled by lesions in or on the template DNA. Insight into how this interconversion may be catalysed has emerged from genetic, biochemical and structural studies of RecG protein, a member of superfamily 2 of DNA and RNA helicases. We describe how a single molecule of RecG might target a branched DNA structure and translocate a single duplex arm to drive branch migration of a Holliday junction, interconvert replication fork and Holliday junction structures and displace the invading strand from a D loop formed during recombination at a DNA end. We present genetic evidence suggesting how the latter activity may provide an efficient pathway for the repair of DNA double-strand breaks that avoids crossing over, thus facilitating chromosome segregation at cell division.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Deib A. A., Mahdi A. A., Lloyd R. G. Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12. J Bacteriol. 1996 Dec;178(23):6782–6789. doi: 10.1128/jb.178.23.6782-6789.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allers T., Lichten M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell. 2001 Jul 13;106(1):47–57. doi: 10.1016/s0092-8674(01)00416-0. [DOI] [PubMed] [Google Scholar]
  3. Barre F. X., Søballe B., Michel B., Aroyo M., Robertson M., Sherratt D. Circles: the replication-recombination-chromosome segregation connection. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8189–8195. doi: 10.1073/pnas.111008998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boddy M. N., Gaillard P. H., McDonald W. H., Shanahan P., Yates J. R., 3rd, Russell P. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell. 2001 Nov 16;107(4):537–548. doi: 10.1016/s0092-8674(01)00536-0. [DOI] [PubMed] [Google Scholar]
  5. Bolt Edward L., Lloyd Robert G. Substrate specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo. Mol Cell. 2002 Jul;10(1):187–198. doi: 10.1016/s1097-2765(02)00560-9. [DOI] [PubMed] [Google Scholar]
  6. Bzymek M., Lovett S. T. Evidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing. Genetics. 2001 Jun;158(2):527–540. doi: 10.1093/genetics/158.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bzymek M., Lovett S. T. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8319–8325. doi: 10.1073/pnas.111008398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carney J. P., Maser R. S., Olivares H., Davis E. M., Le Beau M., Yates J. R., 3rd, Hays L., Morgan W. F., Petrini J. H. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998 May 1;93(3):477–486. doi: 10.1016/s0092-8674(00)81175-7. [DOI] [PubMed] [Google Scholar]
  9. Chakraverty R. K., Hickson I. D. Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. Bioessays. 1999 Apr;21(4):286–294. doi: 10.1002/(SICI)1521-1878(199904)21:4<286::AID-BIES4>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  10. Constantinou A., Tarsounas M., Karow J. K., Brosh R. M., Bohr V. A., Hickson I. D., West S. C. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 2000 Jul;1(1):80–84. doi: 10.1093/embo-reports/kvd004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Constantinou Angelos, Chen Xiao-Bo, McGowan Clare H., West Stephen C. Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J. 2002 Oct 15;21(20):5577–5585. doi: 10.1093/emboj/cdf554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Courcelle J., Hanawalt P. C. Participation of recombination proteins in rescue of arrested replication forks in UV-irradiated Escherichia coli need not involve recombination. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8196–8202. doi: 10.1073/pnas.121008898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Courcelle J., Hanawalt P. C. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol Gen Genet. 1999 Oct;262(3):543–551. doi: 10.1007/s004380051116. [DOI] [PubMed] [Google Scholar]
  14. Courcelle Justin, Donaldson Janet R., Chow Kin-Hoe, Courcelle Charmain T. DNA damage-induced replication fork regression and processing in Escherichia coli. Science. 2003 Jan 23;299(5609):1064–1067. doi: 10.1126/science.1081328. [DOI] [PubMed] [Google Scholar]
  15. Cox M. M., Goodman M. F., Kreuzer K. N., Sherratt D. J., Sandler S. J., Marians K. J. The importance of repairing stalled replication forks. Nature. 2000 Mar 2;404(6773):37–41. doi: 10.1038/35003501. [DOI] [PubMed] [Google Scholar]
  16. Cromie G. A., Leach D. R. Control of crossing over. Mol Cell. 2000 Oct;6(4):815–826. doi: 10.1016/s1097-2765(05)00095-x. [DOI] [PubMed] [Google Scholar]
  17. Emmerson P. T. Recombination deficient mutants of Escherichia coli K12 that map between thy A and argA. Genetics. 1968 Sep;60(1):19–30. doi: 10.1093/genetics/60.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Flores-Rozas H., Kolodner R. D. Links between replication, recombination and genome instability in eukaryotes. Trends Biochem Sci. 2000 Apr;25(4):196–200. doi: 10.1016/s0968-0004(00)01568-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Flores M. J., Bierne H., Ehrlich S. D., Michel B. Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO J. 2001 Feb 1;20(3):619–629. doi: 10.1093/emboj/20.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Friedberg Errol C., Wagner Robert, Radman Miroslav. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science. 2002 May 31;296(5573):1627–1630. doi: 10.1126/science.1070236. [DOI] [PubMed] [Google Scholar]
  21. Fukuoh A., Iwasaki H., Ishioka K., Shinagawa H. ATP-dependent resolution of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a Holliday junction-specific helicase. EMBO J. 1997 Jan 2;16(1):203–209. doi: 10.1093/emboj/16.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gregg Amanda V., McGlynn Peter, Jaktaji Razieh P., Lloyd Robert G. Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell. 2002 Feb;9(2):241–251. doi: 10.1016/s1097-2765(02)00455-0. [DOI] [PubMed] [Google Scholar]
  23. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  24. Hargreaves D., Rice D. W., Sedelnikova S. E., Artymiuk P. J., Lloyd R. G., Rafferty J. B. Crystal structure of E.coli RuvA with bound DNA Holliday junction at 6 A resolution. Nat Struct Biol. 1998 Jun;5(6):441–446. doi: 10.1038/nsb0698-441. [DOI] [PubMed] [Google Scholar]
  25. Harris R. S., Ross K. J., Rosenberg S. M. Opposing roles of the holliday junction processing systems of Escherichia coli in recombination-dependent adaptive mutation. Genetics. 1996 Mar;142(3):681–691. doi: 10.1093/genetics/142.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Horiuchi T., Fujimura Y. Recombinational rescue of the stalled DNA replication fork: a model based on analysis of an Escherichia coli strain with a chromosome region difficult to replicate. J Bacteriol. 1995 Feb;177(3):783–791. doi: 10.1128/jb.177.3.783-791.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jaktaji Razieh P., Lloyd Robert G. PriA supports two distinct pathways for replication restart in UV-irradiated Escherichia coli cells. Mol Microbiol. 2003 Feb;47(4):1091–1100. doi: 10.1046/j.1365-2958.2003.03357.x. [DOI] [PubMed] [Google Scholar]
  28. Jeggo P. A., Carr A. M., Lehmann A. R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet. 1998 Aug;14(8):312–316. doi: 10.1016/s0168-9525(98)01511-x. [DOI] [PubMed] [Google Scholar]
  29. Jones J. M., Nakai H. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J Mol Biol. 1999 Jun 11;289(3):503–516. doi: 10.1006/jmbi.1999.2783. [DOI] [PubMed] [Google Scholar]
  30. Kaliraman V., Mullen J. R., Fricke W. M., Bastin-Shanower S. A., Brill S. J. Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev. 2001 Oct 15;15(20):2730–2740. doi: 10.1101/gad.932201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kaplan Daniel L., O'Donnell Mike. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol Cell. 2002 Sep;10(3):647–657. doi: 10.1016/s1097-2765(02)00642-1. [DOI] [PubMed] [Google Scholar]
  32. Karow J. K., Constantinou A., Li J. L., West S. C., Hickson I. D. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6504–6508. doi: 10.1073/pnas.100448097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kogoma T. Recombination by replication. Cell. 1996 May 31;85(5):625–627. doi: 10.1016/s0092-8674(00)81229-5. [DOI] [PubMed] [Google Scholar]
  34. Kowalczykowski S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci. 2000 Apr;25(4):156–165. doi: 10.1016/s0968-0004(00)01569-3. [DOI] [PubMed] [Google Scholar]
  35. Kuzminov A. Collapse and repair of replication forks in Escherichia coli. Mol Microbiol. 1995 May;16(3):373–384. doi: 10.1111/j.1365-2958.1995.tb02403.x. [DOI] [PubMed] [Google Scholar]
  36. Leach D. R. Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays. 1994 Dec;16(12):893–900. doi: 10.1002/bies.950161207. [DOI] [PubMed] [Google Scholar]
  37. Lindahl T. The Croonian Lecture, 1996: endogenous damage to DNA. Philos Trans R Soc Lond B Biol Sci. 1996 Nov 29;351(1347):1529–1538. doi: 10.1098/rstb.1996.0139. [DOI] [PubMed] [Google Scholar]
  38. Lindahl T., Wood R. D. Quality control by DNA repair. Science. 1999 Dec 3;286(5446):1897–1905. doi: 10.1126/science.286.5446.1897. [DOI] [PubMed] [Google Scholar]
  39. Liu J., Xu L., Sandler S. J., Marians K. J. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3552–3555. doi: 10.1073/pnas.96.7.3552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lloyd R. G., Sharples G. J. Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO J. 1993 Jan;12(1):17–22. doi: 10.1002/j.1460-2075.1993.tb05627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lusetti Shelley L., Cox Michael M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem. 2001 Nov 9;71:71–100. doi: 10.1146/annurev.biochem.71.083101.133940. [DOI] [PubMed] [Google Scholar]
  42. Mahdi A. A., McGlynn P., Levett S. D., Lloyd R. G. DNA binding and helicase domains of the Escherichia coli recombination protein RecG. Nucleic Acids Res. 1997 Oct 1;25(19):3875–3880. doi: 10.1093/nar/25.19.3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mahdi Akeel A., Briggs Geoffrey S., Sharples Gary J., Wen Qin, Lloyd Robert G. A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins. EMBO J. 2003 Feb 3;22(3):724–734. doi: 10.1093/emboj/cdg043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mandal T. N., Mahdi A. A., Sharples G. J., Lloyd R. G. Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of ruvA, ruvB, and ruvC mutations. J Bacteriol. 1993 Jul;175(14):4325–4334. doi: 10.1128/jb.175.14.4325-4334.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Marians K. J. PriA-directed replication fork restart in Escherichia coli. Trends Biochem Sci. 2000 Apr;25(4):185–189. doi: 10.1016/s0968-0004(00)01565-6. [DOI] [PubMed] [Google Scholar]
  46. McGlynn P., Al-Deib A. A., Liu J., Marians K. J., Lloyd R. G. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol. 1997 Jul 11;270(2):212–221. doi: 10.1006/jmbi.1997.1120. [DOI] [PubMed] [Google Scholar]
  47. McGlynn P., Lloyd R. G., Marians K. J. Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8235–8240. doi: 10.1073/pnas.121007798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. McGlynn P., Lloyd R. G. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell. 2000 Mar 31;101(1):35–45. doi: 10.1016/S0092-8674(00)80621-2. [DOI] [PubMed] [Google Scholar]
  49. McGlynn P., Lloyd R. G. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8227–8234. doi: 10.1073/pnas.111008698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. McGlynn Peter, Lloyd Robert G. Genome stability and the processing of damaged replication forks by RecG. Trends Genet. 2002 Aug;18(8):413–419. doi: 10.1016/s0168-9525(02)02720-8. [DOI] [PubMed] [Google Scholar]
  51. McGlynn Peter, Lloyd Robert G. Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol. 2002 Nov;3(11):859–870. doi: 10.1038/nrm951. [DOI] [PubMed] [Google Scholar]
  52. Michel B., Recchia G. D., Penel-Colin M., Ehrlich S. D., Sherratt D. J. Resolution of holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Mol Microbiol. 2000 Jul;37(1):180–191. doi: 10.1046/j.1365-2958.2000.01989.x. [DOI] [PubMed] [Google Scholar]
  53. Michel B. Replication fork arrest and DNA recombination. Trends Biochem Sci. 2000 Apr;25(4):173–178. doi: 10.1016/s0968-0004(00)01560-7. [DOI] [PubMed] [Google Scholar]
  54. Moore Timothy, McGlynn Peter, Ngo Hien-Ping, Sharples Gary J., Lloyd Robert G. The RdgC protein of Escherichia coli binds DNA and counters a toxic effect of RecFOR in strains lacking the replication restart protein PriA. EMBO J. 2003 Feb 3;22(3):735–745. doi: 10.1093/emboj/cdg048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Morag A. S., Saveson C. J., Lovett S. T. Expansion of DNA repeats in Escherichia coli: effects of recombination and replication functions. J Mol Biol. 1999 May 28;289(1):21–27. doi: 10.1006/jmbi.1999.2763. [DOI] [PubMed] [Google Scholar]
  56. Myung K., Datta A., Chen C., Kolodner R. D. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet. 2001 Jan;27(1):113–116. doi: 10.1038/83673. [DOI] [PubMed] [Google Scholar]
  57. O'Driscoll Mark, Ruiz-Perez Victor L., Woods C. Geoffrey, Jeggo Penny A., Goodship Judith A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet. 2003 Mar 17;33(4):497–501. doi: 10.1038/ng1129. [DOI] [PubMed] [Google Scholar]
  58. Park Joo-Seop, Marr Michael T., Roberts Jeffrey W. E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell. 2002 Jun 14;109(6):757–767. doi: 10.1016/s0092-8674(02)00769-9. [DOI] [PubMed] [Google Scholar]
  59. Pâques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun;63(2):349–404. doi: 10.1128/mmbr.63.2.349-404.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Pósfai G., Koob M. D., Kirkpatrick H. A., Blattner F. R. Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol. 1997 Jul;179(13):4426–4428. doi: 10.1128/jb.179.13.4426-4428.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Robu M. E., Inman R. B., Cox M. M. RecA protein promotes the regression of stalled replication forks in vitro. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8211–8218. doi: 10.1073/pnas.131022698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Rothstein R., Michel B., Gangloff S. Replication fork pausing and recombination or "gimme a break". Genes Dev. 2000 Jan 1;14(1):1–10. [PubMed] [Google Scholar]
  63. Rouse John, Jackson Stephen P. Interfaces between the detection, signaling, and repair of DNA damage. Science. 2002 Jul 26;297(5581):547–551. doi: 10.1126/science.1074740. [DOI] [PubMed] [Google Scholar]
  64. Sandler S. J., Marians K. J. Role of PriA in replication fork reactivation in Escherichia coli. J Bacteriol. 2000 Jan;182(1):9–13. doi: 10.1128/jb.182.1.9-13.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Sandler S. J. Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics. 2000 Jun;155(2):487–497. doi: 10.1093/genetics/155.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Sargentini N. J., Smith K. C. Quantitation of the involvement of the recA, recB, recC, recF, recJ, recN, lexA, radA, radB, uvrD, and umuC genes in the repair of X-ray-induced DNA double-strand breaks in Escherichia coli. Radiat Res. 1986 Jul;107(1):58–72. [PubMed] [Google Scholar]
  67. Saveson C. J., Lovett S. T. Tandem repeat recombination induced by replication fork defects in Escherichia coli requires a novel factor, RadC. Genetics. 1999 May;152(1):5–13. doi: 10.1093/genetics/152.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Seigneur M., Bidnenko V., Ehrlich S. D., Michel B. RuvAB acts at arrested replication forks. Cell. 1998 Oct 30;95(3):419–430. doi: 10.1016/s0092-8674(00)81772-9. [DOI] [PubMed] [Google Scholar]
  69. Sherratt D. J., Lau I. F., Barre F. X. Chromosome segregation. Curr Opin Microbiol. 2001 Dec;4(6):653–659. doi: 10.1016/s1369-5274(01)00265-x. [DOI] [PubMed] [Google Scholar]
  70. Singleton M. R., Scaife S., Wigley D. B. Structural analysis of DNA replication fork reversal by RecG. Cell. 2001 Oct 5;107(1):79–89. doi: 10.1016/s0092-8674(01)00501-3. [DOI] [PubMed] [Google Scholar]
  71. Sogo José M., Lopes Massimo, Foiani Marco. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science. 2002 Jul 26;297(5581):599–602. doi: 10.1126/science.1074023. [DOI] [PubMed] [Google Scholar]
  72. Symington Lorraine S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev. 2002 Dec;66(4):630-70, table of contents. doi: 10.1128/MMBR.66.4.630-670.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Tercero J. A., Diffley J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature. 2001 Aug 2;412(6846):553–557. doi: 10.1038/35087607. [DOI] [PubMed] [Google Scholar]
  74. Venkitaraman Ashok R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002 Jan 25;108(2):171–182. doi: 10.1016/s0092-8674(02)00615-3. [DOI] [PubMed] [Google Scholar]
  75. Vincent S. D., Mahdi A. A., Lloyd R. G. The RecG branch migration protein of Escherichia coli dissociates R-loops. J Mol Biol. 1996 Dec 13;264(4):713–721. doi: 10.1006/jmbi.1996.0671. [DOI] [PubMed] [Google Scholar]
  76. West S. C. Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet. 1997;31:213–244. doi: 10.1146/annurev.genet.31.1.213. [DOI] [PubMed] [Google Scholar]
  77. West S. C. The RuvABC proteins and Holliday junction processing in Escherichia coli. J Bacteriol. 1996 Mar;178(5):1237–1241. doi: 10.1128/jb.178.5.1237-1241.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Whitby M. C., Bolt E. L., Chan S. N., Lloyd R. G. Interactions between RuvA and RuvC at Holliday junctions: inhibition of junction cleavage and formation of a RuvA-RuvC-DNA complex. J Mol Biol. 1996 Dec 20;264(5):878–890. doi: 10.1006/jmbi.1996.0684. [DOI] [PubMed] [Google Scholar]
  79. Whitby M. C., Lloyd R. G. Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3'-tailed duplex DNA. EMBO J. 1995 Jul 17;14(14):3302–3310. doi: 10.1002/j.1460-2075.1995.tb07337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Xu Liewei, Marians Kenneth J. PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell. 2003 Mar;11(3):817–826. doi: 10.1016/s1097-2765(03)00061-3. [DOI] [PubMed] [Google Scholar]
  81. Yu D., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., Court D. L. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978–5983. doi: 10.1073/pnas.100127597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. van Gool A. J., Shah R., Mézard C., West S. C. Functional interactions between the holliday junction resolvase and the branch migration motor of Escherichia coli. EMBO J. 1998 Mar 16;17(6):1838–1845. doi: 10.1093/emboj/17.6.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. van den Boom Vincent, Jaspers Nicolaas G. J., Vermeulen Wim. When machines get stuck--obstructed RNA polymerase II: displacement, degradation or suicide. Bioessays. 2002 Sep;24(9):780–784. doi: 10.1002/bies.10150. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES