Abstract
The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated.
Full Text
The Full Text of this article is available as a PDF (240.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aussel Laurent, Barre François Xavier, Aroyo Mira, Stasiak Andrzej, Stasiak Alicja Z., Sherratt David. FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell. 2002 Jan 25;108(2):195–205. doi: 10.1016/s0092-8674(02)00624-4. [DOI] [PubMed] [Google Scholar]
- Barre F. X., Aroyo M., Colloms S. D., Helfrich A., Cornet F., Sherratt D. J. FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev. 2000 Dec 1;14(23):2976–2988. doi: 10.1101/gad.188700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barre F. X., Søballe B., Michel B., Aroyo M., Robertson M., Sherratt D. Circles: the replication-recombination-chromosome segregation connection. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8189–8195. doi: 10.1073/pnas.111008998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bath J., Wu L. J., Errington J., Wang J. C. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science. 2000 Nov 3;290(5493):995–997. doi: 10.1126/science.290.5493.995. [DOI] [PubMed] [Google Scholar]
- Blakely G., May G., McCulloch R., Arciszewska L. K., Burke M., Lovett S. T., Sherratt D. J. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell. 1993 Oct 22;75(2):351–361. doi: 10.1016/0092-8674(93)80076-q. [DOI] [PubMed] [Google Scholar]
- Brendler T., Sawitzke J., Sergueev K., Austin S. A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. EMBO J. 2000 Nov 15;19(22):6249–6258. doi: 10.1093/emboj/19.22.6249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
- Champoux J. J. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70:369–413. doi: 10.1146/annurev.biochem.70.1.369. [DOI] [PubMed] [Google Scholar]
- Courcelle J., Hanawalt P. C. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol Gen Genet. 1999 Oct;262(3):543–551. doi: 10.1007/s004380051116. [DOI] [PubMed] [Google Scholar]
- Courcelle Justin, Donaldson Janet R., Chow Kin-Hoe, Courcelle Charmain T. DNA damage-induced replication fork regression and processing in Escherichia coli. Science. 2003 Jan 23;299(5609):1064–1067. doi: 10.1126/science.1081328. [DOI] [PubMed] [Google Scholar]
- Cox M. M., Goodman M. F., Kreuzer K. N., Sherratt D. J., Sandler S. J., Marians K. J. The importance of repairing stalled replication forks. Nature. 2000 Mar 2;404(6773):37–41. doi: 10.1038/35003501. [DOI] [PubMed] [Google Scholar]
- Dingman C. W. Bidirectional chromosome replication: some topological considerations. J Theor Biol. 1974 Jan;43(1):187–195. doi: 10.1016/s0022-5193(74)80052-4. [DOI] [PubMed] [Google Scholar]
- Gao D., McHenry C. S. tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB. J Biol Chem. 2000 Nov 14;276(6):4441–4446. doi: 10.1074/jbc.M009830200. [DOI] [PubMed] [Google Scholar]
- Hanada K., Iwasaki M., Ihashi S., Ikeda H. UvrA and UvrB suppress illegitimate recombination: synergistic action with RecQ helicase. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5989–5994. doi: 10.1073/pnas.100101297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiraga S., Ichinose C., Onogi T., Niki H., Yamazoe M. Bidirectional migration of SeqA-bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli. Genes Cells. 2000 May;5(5):327–341. doi: 10.1046/j.1365-2443.2000.00334.x. [DOI] [PubMed] [Google Scholar]
- Hishida T., Iwasaki H., Ohno T., Morishita T., Shinagawa H. A yeast gene, MGS1, encoding a DNA-dependent AAA(+) ATPase is required to maintain genome stability. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8283–8289. doi: 10.1073/pnas.121009098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobryn K., Chaconas G. The circle is broken: telomere resolution in linear replicons. Curr Opin Microbiol. 2001 Oct;4(5):558–564. doi: 10.1016/s1369-5274(00)00251-4. [DOI] [PubMed] [Google Scholar]
- Kogoma T. Recombination by replication. Cell. 1996 May 31;85(5):625–627. doi: 10.1016/s0092-8674(00)81229-5. [DOI] [PubMed] [Google Scholar]
- Koppes L. J., Woldringh C. L., Nanninga N. Escherichia coli contains a DNA replication compartment in the cell center. Biochimie. 1999 Aug-Sep;81(8-9):803–810. doi: 10.1016/s0300-9084(99)00217-5. [DOI] [PubMed] [Google Scholar]
- Kowalczykowski S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci. 2000 Apr;25(4):156–165. doi: 10.1016/s0968-0004(00)01569-3. [DOI] [PubMed] [Google Scholar]
- Lau Ivy F., Filipe Sergio R., Søballe Britta, Økstad Ole-Andreas, Barre Francois-Xavier, Sherratt David J. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol. 2003 Aug;49(3):731–743. doi: 10.1046/j.1365-2958.2003.03640.x. [DOI] [PubMed] [Google Scholar]
- Lemon K. P., Grossman A. D. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science. 1998 Nov 20;282(5393):1516–1519. doi: 10.1126/science.282.5393.1516. [DOI] [PubMed] [Google Scholar]
- Lemon K. P., Grossman A. D. Movement of replicating DNA through a stationary replisome. Mol Cell. 2000 Dec;6(6):1321–1330. doi: 10.1016/s1097-2765(00)00130-1. [DOI] [PubMed] [Google Scholar]
- Lemon K. P., Grossman A. D. The extrusion-capture model for chromosome partitioning in bacteria. Genes Dev. 2001 Aug 15;15(16):2031–2041. doi: 10.1101/gad.913301. [DOI] [PubMed] [Google Scholar]
- Lewis P. J., Errington J. Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the SpoOJ partitioning protein. Mol Microbiol. 1997 Sep;25(5):945–954. doi: 10.1111/j.1365-2958.1997.mmi530.x. [DOI] [PubMed] [Google Scholar]
- Li Yongfang, Sergueev Kirill, Austin Stuart. The segregation of the Escherichia coli origin and terminus of replication. Mol Microbiol. 2002 Nov;46(4):985–996. doi: 10.1046/j.1365-2958.2002.03234.x. [DOI] [PubMed] [Google Scholar]
- Liu G., Draper G. C., Donachie W. D. FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli. Mol Microbiol. 1998 Aug;29(3):893–903. doi: 10.1046/j.1365-2958.1998.00986.x. [DOI] [PubMed] [Google Scholar]
- Majka Jerzy, Burgers Peter M. J. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc Natl Acad Sci U S A. 2003 Feb 25;100(5):2249–2254. doi: 10.1073/pnas.0437148100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maurizi M. R., Li C. C. AAA proteins: in search of a common molecular basis. International Meeting on Cellular Functions of AAA Proteins. EMBO Rep. 2001 Nov;2(11):980–985. doi: 10.1093/embo-reports/kve229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClintock B. A Correlation of Ring-Shaped Chromosomes with Variegation in Zea Mays. Proc Natl Acad Sci U S A. 1932 Dec;18(12):677–681. doi: 10.1073/pnas.18.12.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCool J. D., Sandler S. J. Effects of mutations involving cell division, recombination, and chromosome dimer resolution on a priA2::kan mutant. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8203–8210. doi: 10.1073/pnas.121007698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McElhinny A. S., Kolmerer B., Fowler V. M., Labeit S., Gregorio C. C. The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem. 2001 Jan 5;276(1):583–592. doi: 10.1074/jbc.M005693200. [DOI] [PubMed] [Google Scholar]
- McGlynn Peter, Lloyd Robert G. Genome stability and the processing of damaged replication forks by RecG. Trends Genet. 2002 Aug;18(8):413–419. doi: 10.1016/s0168-9525(02)02720-8. [DOI] [PubMed] [Google Scholar]
- Michel B., Recchia G. D., Penel-Colin M., Ehrlich S. D., Sherratt D. J. Resolution of holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Mol Microbiol. 2000 Jul;37(1):180–191. doi: 10.1046/j.1365-2958.2000.01989.x. [DOI] [PubMed] [Google Scholar]
- Mohaghegh P., Hickson I. D. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Hum Mol Genet. 2001 Apr;10(7):741–746. doi: 10.1093/hmg/10.7.741. [DOI] [PubMed] [Google Scholar]
- Mosig G. The essential role of recombination in phage T4 growth. Annu Rev Genet. 1987;21:347–371. doi: 10.1146/annurev.ge.21.120187.002023. [DOI] [PubMed] [Google Scholar]
- Myung K., Datta A., Chen C., Kolodner R. D. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet. 2001 Jan;27(1):113–116. doi: 10.1038/83673. [DOI] [PubMed] [Google Scholar]
- Niki H., Hiraga S. Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. Genes Dev. 1998 Apr 1;12(7):1036–1045. doi: 10.1101/gad.12.7.1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niki H., Yamaichi Y., Hiraga S. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 2000 Jan 15;14(2):212–223. [PMC free article] [PubMed] [Google Scholar]
- Nurse Pearl, Levine Cindy, Hassing Heide, Marians Kenneth J. Topoisomerase III can serve as the cellular decatenase in Escherichia coli. J Biol Chem. 2002 Dec 31;278(10):8653–8660. doi: 10.1074/jbc.M211211200. [DOI] [PubMed] [Google Scholar]
- Onogi T., Niki H., Yamazoe M., Hiraga S. The assembly and migration of SeqA-Gfp fusion in living cells of Escherichia coli. Mol Microbiol. 1999 Mar;31(6):1775–1782. doi: 10.1046/j.1365-2958.1999.01313.x. [DOI] [PubMed] [Google Scholar]
- Petronczki Mark, Siomos Maria F., Nasmyth Kim. Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell. 2003 Feb 21;112(4):423–440. doi: 10.1016/s0092-8674(03)00083-7. [DOI] [PubMed] [Google Scholar]
- Postow L., Crisona N. J., Peter B. J., Hardy C. D., Cozzarelli N. R. Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8219–8226. doi: 10.1073/pnas.111006998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postow L., Ullsperger C., Keller R. W., Bustamante C., Vologodskii A. V., Cozzarelli N. R. Positive torsional strain causes the formation of a four-way junction at replication forks. J Biol Chem. 2000 Oct 30;276(4):2790–2796. doi: 10.1074/jbc.M006736200. [DOI] [PubMed] [Google Scholar]
- Pérals K., Capiaux H., Vincourt J. B., Louarn J. M., Sherratt D. J., Cornet F. Interplay between recombination, cell division and chromosome structure during chromosome dimer resolution in Escherichia coli. Mol Microbiol. 2001 Feb;39(4):904–913. doi: 10.1046/j.1365-2958.2001.02277.x. [DOI] [PubMed] [Google Scholar]
- Robinett C. C., Straight A., Li G., Willhelm C., Sudlow G., Murray A., Belmont A. S. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol. 1996 Dec;135(6 Pt 2):1685–1700. doi: 10.1083/jcb.135.6.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seigneur M., Bidnenko V., Ehrlich S. D., Michel B. RuvAB acts at arrested replication forks. Cell. 1998 Oct 30;95(3):419–430. doi: 10.1016/s0092-8674(00)81772-9. [DOI] [PubMed] [Google Scholar]
- Sherratt D. J., Arciszewska L. K., Blakely G., Colloms S., Grant K., Leslie N., McCulloch R. Site-specific recombination and circular chromosome segregation. Philos Trans R Soc Lond B Biol Sci. 1995 Jan 30;347(1319):37–42. doi: 10.1098/rstb.1995.0006. [DOI] [PubMed] [Google Scholar]
- Sherratt D. J., Lau I. F., Barre F. X. Chromosome segregation. Curr Opin Microbiol. 2001 Dec;4(6):653–659. doi: 10.1016/s1369-5274(01)00265-x. [DOI] [PubMed] [Google Scholar]
- Sherratt David J. Bacterial chromosome dynamics. Science. 2003 Aug 8;301(5634):780–785. doi: 10.1126/science.1084780. [DOI] [PubMed] [Google Scholar]
- Steiner W. W., Kuempel P. L. Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site. J Bacteriol. 1998 Dec;180(23):6269–6275. doi: 10.1128/jb.180.23.6269-6275.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner W., Liu G., Donachie W. D., Kuempel P. The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol Microbiol. 1999 Jan;31(2):579–583. doi: 10.1046/j.1365-2958.1999.01198.x. [DOI] [PubMed] [Google Scholar]
- Straight A. F., Belmont A. S., Robinett C. C., Murray A. W. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol. 1996 Dec 1;6(12):1599–1608. doi: 10.1016/s0960-9822(02)70783-5. [DOI] [PubMed] [Google Scholar]
- Summers D. K., Sherratt D. J. Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell. 1984 Apr;36(4):1097–1103. doi: 10.1016/0092-8674(84)90060-6. [DOI] [PubMed] [Google Scholar]
- Sunako Y., Onogi T., Hiraga S. Sister chromosome cohesion of Escherichia coli. Mol Microbiol. 2001 Dec;42(5):1233–1241. doi: 10.1046/j.1365-2958.2001.02680.x. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
- Versini Gwennaelle, Comet Itys, Wu Michelle, Hoopes Laura, Schwob Etienne, Pasero Philippe. The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication. EMBO J. 2003 Apr 15;22(8):1939–1949. doi: 10.1093/emboj/cdg180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang James C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol. 2002 Jun;3(6):430–440. doi: 10.1038/nrm831. [DOI] [PubMed] [Google Scholar]
- Wang L., Lutkenhaus J. FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol Microbiol. 1998 Aug;29(3):731–740. doi: 10.1046/j.1365-2958.1998.00958.x. [DOI] [PubMed] [Google Scholar]
- Woldringh Conrad L. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol. 2002 Jul;45(1):17–29. doi: 10.1046/j.1365-2958.2002.02993.x. [DOI] [PubMed] [Google Scholar]
- Yates James, Aroyo Mira, Sherratt David J., Barre François-Xavier. Species specificity in the activation of Xer recombination at dif by FtsK. Mol Microbiol. 2003 Jul;49(1):241–249. doi: 10.1046/j.1365-2958.2003.03574.x. [DOI] [PubMed] [Google Scholar]
- Yu X. C., Weihe E. K., Margolin W. Role of the C terminus of FtsK in Escherichia coli chromosome segregation. J Bacteriol. 1998 Dec;180(23):6424–6428. doi: 10.1128/jb.180.23.6424-6428.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]