Abstract
The structures of DNA polymerases from different families show common features and significant differences that shed light on the ability of these enzymes to accurately copy DNA and translocate. The structure of a B family DNA polymerase from phage RB69 exhibits an active-site closing conformational change in the fingers domain upon forming a ternary complex with primer template in deoxynucleoside triphosphate. The rotation of the fingers domain alpha-helices by 60 degrees upon dNTP binding is analogous to the changes seen in other families of polymerases. When the 3' terminus is bound to the editing 3' exonuclease active site, the orientation of the DNA helix axis changes by 40 degrees and the thumb domain re-orients with the DNA. Structures of substrate and product complexes of T7 RNA polymerase, a structural homologue of T7 DNA polymerase, show that family polymerases use the rotation conformational change of the fingers domain to translocate down the DNA. The fingers opening rotation that results in translocation is powered by the release of the product pyrophosphate and also enables the Pol I family polymerases to function as a helicase in displacing the downstream non-template strand from the template strand.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bedford E., Tabor S., Richardson C. C. The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):479–484. doi: 10.1073/pnas.94.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beese L. S., Derbyshire V., Steitz T. A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science. 1993 Apr 16;260(5106):352–355. doi: 10.1126/science.8469987. [DOI] [PubMed] [Google Scholar]
- Beese L. S., Steitz T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan;10(1):25–33. doi: 10.1002/j.1460-2075.1991.tb07917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernad A., Blanco L., Salas M. Site-directed mutagenesis of the YCDTDS amino acid motif of the phi 29 DNA polymerase. Gene. 1990 Sep 28;94(1):45–51. doi: 10.1016/0378-1119(90)90466-5. [DOI] [PubMed] [Google Scholar]
- Brautigam C. A., Steitz T. A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol. 1998 Feb;8(1):54–63. doi: 10.1016/s0959-440x(98)80010-9. [DOI] [PubMed] [Google Scholar]
- Cheetham G. M., Jeruzalmi D., Steitz T. A. Transcription regulation, initiation, and "DNA scrunching" by T7 RNA polymerase. Cold Spring Harb Symp Quant Biol. 1998;63:263–267. doi: 10.1101/sqb.1998.63.263. [DOI] [PubMed] [Google Scholar]
- Cheetham G. M., Steitz T. A. Structure of a transcribing T7 RNA polymerase initiation complex. Science. 1999 Dec 17;286(5448):2305–2309. doi: 10.1126/science.286.5448.2305. [DOI] [PubMed] [Google Scholar]
- Doublié S., Tabor S., Long A. M., Richardson C. C., Ellenberger T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature. 1998 Jan 15;391(6664):251–258. doi: 10.1038/34593. [DOI] [PubMed] [Google Scholar]
- Franklin M. C., Wang J., Steitz T. A. Structure of the replicating complex of a pol alpha family DNA polymerase. Cell. 2001 Jun 1;105(5):657–667. doi: 10.1016/s0092-8674(01)00367-1. [DOI] [PubMed] [Google Scholar]
- Freemont P. S., Friedman J. M., Beese L. S., Sanderson M. R., Steitz T. A. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8924–8928. doi: 10.1073/pnas.85.23.8924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedberg E. C., Feaver W. J., Gerlach V. L. The many faces of DNA polymerases: strategies for mutagenesis and for mutational avoidance. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5681–5683. doi: 10.1073/pnas.120152397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedberg E. C., Gerlach V. L. Novel DNA polymerases offer clues to the molecular basis of mutagenesis. Cell. 1999 Aug 20;98(4):413–416. doi: 10.1016/s0092-8674(00)81970-4. [DOI] [PubMed] [Google Scholar]
- Goodman M. F., Tippin B. The expanding polymerase universe. Nat Rev Mol Cell Biol. 2000 Nov;1(2):101–109. doi: 10.1038/35040051. [DOI] [PubMed] [Google Scholar]
- Huang H., Chopra R., Verdine G. L., Harrison S. C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998 Nov 27;282(5394):1669–1675. doi: 10.1126/science.282.5394.1669. [DOI] [PubMed] [Google Scholar]
- Johnson Sean J., Taylor Jeffrey S., Beese Lorena S. Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations. Proc Natl Acad Sci U S A. 2003 Mar 20;100(7):3895–3900. doi: 10.1073/pnas.0630532100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiefer J. R., Mao C., Braman J. C., Beese L. S. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature. 1998 Jan 15;391(6664):304–307. doi: 10.1038/34693. [DOI] [PubMed] [Google Scholar]
- Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
- Li Y., Kong Y., Korolev S., Waksman G. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates. Protein Sci. 1998 May;7(5):1116–1123. doi: 10.1002/pro.5560070505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Y., Korolev S., Waksman G. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 1998 Dec 15;17(24):7514–7525. doi: 10.1093/emboj/17.24.7514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ling H., Boudsocq F., Woodgate R., Yang W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell. 2001 Oct 5;107(1):91–102. doi: 10.1016/s0092-8674(01)00515-3. [DOI] [PubMed] [Google Scholar]
- Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. 1985 Feb 28-Mar 6Nature. 313(6005):762–766. doi: 10.1038/313762a0. [DOI] [PubMed] [Google Scholar]
- Ollis D. L., Kline C., Steitz T. A. Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase. 1985 Feb 28-Mar 6Nature. 313(6005):818–819. doi: 10.1038/313818a0. [DOI] [PubMed] [Google Scholar]
- Pelletier H., Sawaya M. R., Kumar A., Wilson S. H., Kraut J. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science. 1994 Jun 24;264(5167):1891–1903. [PubMed] [Google Scholar]
- Sawaya M. R., Pelletier H., Kumar A., Wilson S. H., Kraut J. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science. 1994 Jun 24;264(5167):1930–1935. doi: 10.1126/science.7516581. [DOI] [PubMed] [Google Scholar]
- Shamoo Y., Friedman A. M., Parsons M. R., Konigsberg W. H., Steitz T. A. Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature. 1995 Jul 27;376(6538):362–366. doi: 10.1038/376362a0. [DOI] [PubMed] [Google Scholar]
- Shamoo Y., Steitz T. A. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell. 1999 Oct 15;99(2):155–166. doi: 10.1016/s0092-8674(00)81647-5. [DOI] [PubMed] [Google Scholar]
- Steitz T. A., Smerdon S. J., Jäger J., Joyce C. M. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science. 1994 Dec 23;266(5193):2022–2025. doi: 10.1126/science.7528445. [DOI] [PubMed] [Google Scholar]
- Steitz T. A., Steitz J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498–6502. doi: 10.1073/pnas.90.14.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J., Sattar A. K., Wang C. C., Karam J. D., Konigsberg W. H., Steitz T. A. Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell. 1997 Jun 27;89(7):1087–1099. doi: 10.1016/s0092-8674(00)80296-2. [DOI] [PubMed] [Google Scholar]
- Woodgate R. A plethora of lesion-replicating DNA polymerases. Genes Dev. 1999 Sep 1;13(17):2191–2195. doi: 10.1101/gad.13.17.2191. [DOI] [PubMed] [Google Scholar]
- Yeh L. S., Hsu T., Karam J. D. Divergence of a DNA replication gene cluster in the T4-related bacteriophage RB69. J Bacteriol. 1998 Apr;180(8):2005–2013. doi: 10.1128/jb.180.8.2005-2013.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yin Y. Whitney, Steitz Thomas A. Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science. 2002 Sep 19;298(5597):1387–1395. doi: 10.1126/science.1077464. [DOI] [PubMed] [Google Scholar]
- Zhou B. L., Pata J. D., Steitz T. A. Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Mol Cell. 2001 Aug;8(2):427–437. doi: 10.1016/s1097-2765(01)00310-0. [DOI] [PubMed] [Google Scholar]