Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Feb 29;359(1442):265–274. doi: 10.1098/rstb.2003.1389

Quaternary diversification in European alpine plants: pattern and process.

Joachim W Kadereit 1, Eva Maria Griebeler 1, Hans Peter Comes 1
PMCID: PMC1693311  PMID: 15101582

Abstract

Molecular clock approaches applied previously to European alpine plants suggest that Primula sect. Auricula, Gentiana sect. Ciminalis and Soldanella diversified at the beginning of the Quaternary or well within this period, whereas Globularia had already started diversifying in the (Late-)Tertiary. In the first part of this paper we present evidence that, in contrast to Globularia and Soldanella, the branching patterns of the molecular internal transcribed spacer phylogenies of both Primula and Gentiana are incompatible with a constant-rates birth-death model. In both of these last two taxa, speciation probably decreased through Quaternary times, perhaps because of some niche-filling process and/or a decrease in specific range size. In the second part, we apply nonlinear regression analyses to the lineage-through-time plots of P. sect. Auricula to test a range of capacity-dependent models of diversification, and the effect of Quaternary climatic oscillations on diversification and extinction. At least for one major clade of sect. Auricula there is firm evidence that both diversification and extinction are a function of temperature. Intriguingly, temperature appears to be correlated positively with extinction, but negatively with diversification. This suggests that diversification did not take place, as previously assumed, in geographical isolation in high-altitude interglacial refugia, but rather at low altitudes in geographically isolated glacial refugia.

Full Text

The Full Text of this article is available as a PDF (152.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avise J. C., Walker D., Johns G. C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc Biol Sci. 1998 Sep 22;265(1407):1707–1712. doi: 10.1098/rspb.1998.0492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin B. G., Sanderson M. J. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9402–9406. doi: 10.1073/pnas.95.16.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barraclough T. G., Nee S. Phylogenetics and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):391–399. doi: 10.1016/s0169-5347(01)02161-9. [DOI] [PubMed] [Google Scholar]
  4. Comes H. P., Abbott R. J. Molecular phylogeography, reticulation, and lineage sorting in Mediterranean Senecio sect. Senecio (Asteraceae). Evolution. 2001 Oct;55(10):1943–1962. [PubMed] [Google Scholar]
  5. Felsenstein J. Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet. 1988;22:521–565. doi: 10.1146/annurev.ge.22.120188.002513. [DOI] [PubMed] [Google Scholar]
  6. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000 Jun 22;405(6789):907–913. doi: 10.1038/35016000. [DOI] [PubMed] [Google Scholar]
  7. Knowles L. L. Tests of pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution. 2000 Aug;54(4):1337–1348. doi: 10.1111/j.0014-3820.2000.tb00566.x. [DOI] [PubMed] [Google Scholar]
  8. Kropf Matthias, Kadereit Joachim W., Comes Hans Peter. Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Mol Ecol. 2003 Apr;12(4):931–949. doi: 10.1046/j.1365-294x.2003.01781.x. [DOI] [PubMed] [Google Scholar]
  9. Kropf Matthias, Kadereit Joachim W., Comes Hans Peter. Late Quaternary distributional stasis in the submediterranean mountain plant Anthyllis montana L. (Fabaceae) inferred from ITS sequences and amplified fragment length polymorphism markers. Mol Ecol. 2002 Mar;11(3):447–463. doi: 10.1046/j.1365-294x.2002.01446.x. [DOI] [PubMed] [Google Scholar]
  10. Magallón S., Sanderson M. J. Absolute diversification rates in angiosperm clades. Evolution. 2001 Sep;55(9):1762–1780. doi: 10.1111/j.0014-3820.2001.tb00826.x. [DOI] [PubMed] [Google Scholar]
  11. Nee S., Holmes E. C., May R. M., Harvey P. H. Extinction rates can be estimated from molecular phylogenies. Philos Trans R Soc Lond B Biol Sci. 1994 Apr 29;344(1307):77–82. doi: 10.1098/rstb.1994.0054. [DOI] [PubMed] [Google Scholar]
  12. Nee S. Inferring speciation rates from phylogenies. Evolution. 2001 Apr;55(4):661–668. doi: 10.1554/0014-3820(2001)055[0661:isrfp]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  13. Nee S., May R. M., Harvey P. H. The reconstructed evolutionary process. Philos Trans R Soc Lond B Biol Sci. 1994 May 28;344(1309):305–311. doi: 10.1098/rstb.1994.0068. [DOI] [PubMed] [Google Scholar]
  14. Nee S., Mooers A. O., Harvey P. H. Tempo and mode of evolution revealed from molecular phylogenies. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8322–8326. doi: 10.1073/pnas.89.17.8322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. doi: 10.1098/rspb.1997.0158. [DOI] [PMC free article] [Google Scholar]
  16. doi: 10.1098/rspb.1999.0691. [DOI] [PMC free article] [Google Scholar]
  17. Purvis A., Nee S., Harvey P. H. Macroevolutionary inferences from primate phylogeny. Proc Biol Sci. 1995 Jun 22;260(1359):329–333. doi: 10.1098/rspb.1995.0100. [DOI] [PubMed] [Google Scholar]
  18. Pybus O. G., Harvey P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc Biol Sci. 2000 Nov 22;267(1459):2267–2272. doi: 10.1098/rspb.2000.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pybus O. G., Rambaut A., Holmes E. C., Harvey P. H. New inferences from tree shape: numbers of missing taxa and population growth rates. Syst Biol. 2002 Dec;51(6):881–888. doi: 10.1080/10635150290102582. [DOI] [PubMed] [Google Scholar]
  20. Strimmer K., Pybus O. G. Exploring the demographic history of DNA sequences using the generalized skyline plot. Mol Biol Evol. 2001 Dec;18(12):2298–2305. doi: 10.1093/oxfordjournals.molbev.a003776. [DOI] [PubMed] [Google Scholar]
  21. Taberlet P., Fumagalli L., Wust-Saucy A. G., Cosson J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998 Apr;7(4):453–464. doi: 10.1046/j.1365-294x.1998.00289.x. [DOI] [PubMed] [Google Scholar]
  22. Templeton A. R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol. 1998 Apr;7(4):381–397. doi: 10.1046/j.1365-294x.1998.00308.x. [DOI] [PubMed] [Google Scholar]
  23. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zink R. M., Slowinski J. B. Evidence from molecular systematics for decreased avian diversification in the pleistocene Epoch. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5832–5835. doi: 10.1073/pnas.92.13.5832. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES