Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Feb 29;359(1442):215–220. doi: 10.1098/rstb.2003.1392

The tempo of avian diversification during the Quaternary.

Robert M Zink 1, John Klicka 1, Brian R Barber 1
PMCID: PMC1693317  PMID: 15101578

Abstract

It is generally assumed that the Quaternary was a period of heightened diversification in temperate vertebrate organisms. Previous molecular systematics studies have challenged this assertion. We re-examined this issue in north temperate birds using log-lineage plots and distributions of sister-taxon distances. Log-lineage plots support earlier conclusions that avian diversification slowed during the Quaternary. To test plots of empirical sister-taxon distances we simulated three sets of phylogenies: constant speciation and extinction, a pulse of recent speciation, and a pulse of recent extinction. Previous opinions favour the model of recent speciation although our empirical dataset on 74 avian comparisons failed to reject a distribution derived from the constant and extinction models. Hence, it does not appear that the Quaternary was a period of exceptional rates of diversification, relative to the background rate.

Full Text

The Full Text of this article is available as a PDF (106.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avise J. C., Ball R. M., Arnold J. Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Mol Biol Evol. 1988 Jul;5(4):331–344. doi: 10.1093/oxfordjournals.molbev.a040504. [DOI] [PubMed] [Google Scholar]
  2. Avise J. C., Walker D. Pleistocene phylogeographic effects on avian populations and the speciation process. Proc Biol Sci. 1998 Mar 22;265(1395):457–463. doi: 10.1098/rspb.1998.0317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edwards S. V., Beerli P. Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution. 2000 Dec;54(6):1839–1854. doi: 10.1111/j.0014-3820.2000.tb01231.x. [DOI] [PubMed] [Google Scholar]
  4. Johnson N. K., Cicero C. The role of ecologic diversification in sibling speciation of Empidonax flycatchers (Tyrannidae): multigene evidence from mtDNA. Mol Ecol. 2002 Oct;11(10):2065–2081. doi: 10.1046/j.1365-294x.2002.01588.x. [DOI] [PubMed] [Google Scholar]
  5. Nee S., Holmes E. C., Rambaut A., Harvey P. H. Inferring population history from molecular phylogenies. Philos Trans R Soc Lond B Biol Sci. 1995 Jul 29;349(1327):25–31. doi: 10.1098/rstb.1995.0087. [DOI] [PubMed] [Google Scholar]
  6. doi: 10.1098/rspb.1999.0691. [DOI] [PMC free article] [Google Scholar]
  7. doi: 10.1098/rspb.1999.0825. [DOI] [PMC free article] [Google Scholar]
  8. Zink R. M., Slowinski J. B. Evidence from molecular systematics for decreased avian diversification in the pleistocene Epoch. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5832–5835. doi: 10.1073/pnas.92.13.5832. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES