Abstract
Historical climate changes have had a major effect on the distribution and evolution of plant species in the neotropics. What is more controversial is whether relatively recent Pleistocene climatic changes have driven speciation, or whether neotropical species diversity is more ancient. This question is addressed using evolutionary rate analysis of sequence data of nuclear ribosomal internal transcribed spacers in diverse taxa occupying neotropical seasonally dry forests, including Ruprechtia (Polygonaceae), robinioid legumes (Fabaceae), Chaetocalyx and Nissolia (Fabaceae), and Loxopterygium (Anacardiaceae). Species diversifications in these taxa occurred both during and before the Pleistocene in Central America, but were primarily pre-Pleistocene in South America. This indicates plausibility both for models that predict tropical species diversity to be recent and that invoke a role for Pleistocene climatic change, and those that consider it ancient and implicate geological factors such as the Andean orogeny and the closure of the Panama Isthmus. Cladistic vicariance analysis was attempted to identify common factors underlying evolution in these groups. In spite of the similar Mid-Miocene to Pliocene ages of the study taxa, and their high degree of endemism in the different fragments of South American dry forests, the analysis yielded equivocal, non-robust patterns of area relationships.
Full Text
The Full Text of this article is available as a PDF (868.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buckler E. S., 4th, Ippolito A., Holtsford T. P. The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics. 1997 Mar;145(3):821–832. doi: 10.1093/genetics/145.3.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glor R. E., Vitt L. J., Larson A. A molecular phylogenetic analysis of diversification in Amazonian Anolis lizards. Mol Ecol. 2001 Nov;10(11):2661–2668. doi: 10.1046/j.0962-1083.2001.01393.x. [DOI] [PubMed] [Google Scholar]
- Haffer J. Speciation in amazonian forest birds. Science. 1969 Jul 11;165(3889):131–137. doi: 10.1126/science.165.3889.131. [DOI] [PubMed] [Google Scholar]
- Huang Y., Street-Perrott F. A., Metcalfe S. E., Brenner M., Moreland M., Freeman K. H. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science. 2001 Aug 31;293(5535):1647–1651. doi: 10.1126/science.1060143. [DOI] [PubMed] [Google Scholar]
- Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
- Huelsenbeck J. P., Ronquist F., Nielsen R., Bollback J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science. 2001 Dec 14;294(5550):2310–2314. doi: 10.1126/science.1065889. [DOI] [PubMed] [Google Scholar]
- Langley C. H., Fitch W. M. An examination of the constancy of the rate of molecular evolution. J Mol Evol. 1974;3(3):161–177. doi: 10.1007/BF01797451. [DOI] [PubMed] [Google Scholar]
- Lavin M., Pennington R. T., Klitgaard B. B., Sprent J. I., de Lima H. C., Gasson P. E. The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am J Bot. 2001 Mar;88(3):503–533. [PubMed] [Google Scholar]
- Mayle F. E., Burbridge R., Killeen T. J. Millennial-scale dynamics of southern Amazonian rain forests. Science. 2000 Dec 22;290(5500):2291–2294. doi: 10.1126/science.290.5500.2291. [DOI] [PubMed] [Google Scholar]
- Mayle Francis E., Beerling David J., Gosling William D., Bush Mark B. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philos Trans R Soc Lond B Biol Sci. 2004 Mar 29;359(1443):499–514. doi: 10.1098/rstb.2003.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers N., Knoll A. H. The biotic crisis and the future of evolution. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5389–5392. doi: 10.1073/pnas.091092498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nee S., May R. M., Harvey P. H. The reconstructed evolutionary process. Philos Trans R Soc Lond B Biol Sci. 1994 May 28;344(1309):305–311. doi: 10.1098/rstb.1994.0068. [DOI] [PubMed] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Rambaut A., Grassly N. C. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci. 1997 Jun;13(3):235–238. doi: 10.1093/bioinformatics/13.3.235. [DOI] [PubMed] [Google Scholar]
- Richardson J. E., Pennington R. T., Pennington T. D., Hollingsworth P. M. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science. 2001 Sep 21;293(5538):2242–2245. doi: 10.1126/science.1061421. [DOI] [PubMed] [Google Scholar]
- Sanderson Michael J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol. 2002 Jan;19(1):101–109. doi: 10.1093/oxfordjournals.molbev.a003974. [DOI] [PubMed] [Google Scholar]
- Woodruff D. S. Declines of biomes and biotas and the future of evolution. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5471–5476. doi: 10.1073/pnas.101093798. [DOI] [PMC free article] [PubMed] [Google Scholar]