Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 May 29;359(1445):765–776. doi: 10.1098/rstb.2004.1467

A critical role for thrombin in vertebrate lens regeneration.

Yutaka Imokawa 1, András Simon 1, Jeremy P Brockes 1
PMCID: PMC1693368  PMID: 15293804

Abstract

Lens regeneration in urodele amphibians such as the newt proceeds from the dorsal margin of the iris where pigment epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. A general problem in regeneration research is to understand how the events of tissue injury or removal are coupled to the activation of plasticity in residual differentiated cells or stem cells. Thrombin, a pivotal regulator of the injury response, has been implicated as a regulator of cell cycle re-entry in newt myotubes, and also in newt iris PEC. After removal of the lens, thrombin was activated on the dorsal margin for 5-7 days. Inactivation of thrombin by either of two different inhibitors essentially blocked S-phase re-entry by PEC at this location. The axolotl, a related species which can regenerate its limb but not its lens, can activate thrombin after amputation but not after lens removal. These data support the hypothesis that thrombin is a critical signal linking injury to regeneration, and offer a new perspective on the evolutionary and phylogenetic questions about regeneration.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agata K., Kobayashi H., Itoh Y., Mochii M., Sawada K., Eguchi G. Genetic characterization of the multipotent dedifferentiated state of pigmented epithelial cells in vitro. Development. 1993 Aug;118(4):1025–1030. doi: 10.1242/dev.118.4.1025. [DOI] [PubMed] [Google Scholar]
  2. Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brockes J. P. Amphibian limb regeneration: rebuilding a complex structure. Science. 1997 Apr 4;276(5309):81–87. doi: 10.1126/science.276.5309.81. [DOI] [PubMed] [Google Scholar]
  4. Brockes J. P., Kumar A., Velloso C. P. Regeneration as an evolutionary variable. J Anat. 2001 Jul-Aug;199(Pt 1-2):3–11. doi: 10.1046/j.1469-7580.2001.19910003.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brockes J. P. Mitogenic growth factors and nerve dependence of limb regeneration. Science. 1984 Sep 21;225(4668):1280–1287. doi: 10.1126/science.6474177. [DOI] [PubMed] [Google Scholar]
  6. Brockes Jeremy P., Kumar Anoop. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol. 2002 Aug;3(8):566–574. doi: 10.1038/nrm881. [DOI] [PubMed] [Google Scholar]
  7. Day F. A., Neufeld D. A. Use of enzyme overlay membranes to survey proteinase activity in frozen sections: cathepsin-like and plasmin-like activity in regenerating newt limbs. J Histochem Cytochem. 1997 Jun;45(6):779–783. doi: 10.1177/002215549704500602. [DOI] [PubMed] [Google Scholar]
  8. Del Rio-Tsonis K., Washabaugh C. H., Tsonis P. A. Expression of pax-6 during urodele eye development and lens regeneration. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5092–5096. doi: 10.1073/pnas.92.11.5092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Del Rio-Tsonis Katia, Tsonis Panagiotis A. Eye regeneration at the molecular age. Dev Dyn. 2003 Feb;226(2):211–224. doi: 10.1002/dvdy.10224. [DOI] [PubMed] [Google Scholar]
  10. Egar M. W. Accessory limb production by nerve-induced cell proliferation. Anat Rec. 1988 May;221(1):550–564. doi: 10.1002/ar.1092210111. [DOI] [PubMed] [Google Scholar]
  11. Eguchi G., Abe S. I., Watanabe K. Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5052–5056. doi: 10.1073/pnas.71.12.5052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eguchi G., Okada T. S. Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: a demonstration of a switch of cell types in clonal cell culture. Proc Natl Acad Sci U S A. 1973 May;70(5):1495–1499. doi: 10.1073/pnas.70.5.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eguchi G., Shingai R. Cellular analysis on localization of lens forming potency in the newt iris epithelium. Dev Growth Differ. 1971 Dec;13(4):337–349. doi: 10.1111/j.1440-169x.1971.00337.x. [DOI] [PubMed] [Google Scholar]
  14. Filoni S., Cannata S. M., Bernardini S., La Mesa G. The inhibition of cell proliferation by mitomycin C does not prevent transdifferentiation of outer cornea into lens in larval Xenopus laevis. Differentiation. 1995 Feb;58(3):195–203. doi: 10.1046/j.1432-0436.1995.5830195.x. [DOI] [PubMed] [Google Scholar]
  15. Gordon H., Brockes J. P. Appearance and regulation of an antigen associated with limb regeneration in Notophthalmus viridescens. J Exp Zool. 1988 Sep;247(3):232–243. doi: 10.1002/jez.1402470306. [DOI] [PubMed] [Google Scholar]
  16. Imokawa Yutaka, Brockes Jeremy P. Selective activation of thrombin is a critical determinant for vertebrate lens regeneration. Curr Biol. 2003 May 13;13(10):877–881. doi: 10.1016/s0960-9822(03)00294-x. [DOI] [PubMed] [Google Scholar]
  17. Ito M., Hayashi T., Kuroiwa A., Okamoto M. Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt. Dev Growth Differ. 1999 Aug;41(4):429–440. doi: 10.1046/j.1440-169x.1999.00447.x. [DOI] [PubMed] [Google Scholar]
  18. Kumar A., Velloso C. P., Imokawa Y., Brockes J. P. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol. 2000 Feb 15;218(2):125–136. doi: 10.1006/dbio.1999.9569. [DOI] [PubMed] [Google Scholar]
  19. McDonnell T. J., Oberpriller J. O. The response of the atrium to direct mechanical wounding in the adult heart of the newt, Notophthalmus viridescens. An electron-microscopic and autoradiographic study. Cell Tissue Res. 1984;235(3):583–592. doi: 10.1007/BF00226956. [DOI] [PubMed] [Google Scholar]
  20. Mitashov V. I. Sravnitel'noe issledovanie regeneratsii linzy u v'iunovykh ryb (Misgurnus fossilis, Nemachilus barbatulus, Nemachilus dorsalis) Dokl Akad Nauk SSSR. 1966 Oct 21;170(6):1439–1442. [PubMed] [Google Scholar]
  21. Novitch B. G., Spicer D. B., Kim P. S., Cheung W. L., Lassar A. B. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr Biol. 1999 May 6;9(9):449–459. doi: 10.1016/s0960-9822(99)80210-3. [DOI] [PubMed] [Google Scholar]
  22. Okamoto M., Ito M., Owaribe K. Difference between dorsal and ventral iris in lens producing potency in normal lens regeneration is maintained after dissociation and reaggregation of cells from the adult newt, Cynops pyrrhogaster. Dev Growth Differ. 1998 Feb;40(1):11–18. doi: 10.1046/j.1440-169x.1998.t01-5-00002.x. [DOI] [PubMed] [Google Scholar]
  23. REYER R. W. Regeneration of the lens in the amphibian eye. Q Rev Biol. 1954 Mar;29(1):1–46. doi: 10.1086/399936. [DOI] [PubMed] [Google Scholar]
  24. Reyer R. W., Woolfitt R. A., Withersty L. T. Stimulation of lens regeneration from the newt dorsal iris when implanted into the blastema of the regenerating limb. Dev Biol. 1973 Jun;32(2):258–281. doi: 10.1016/0012-1606(73)90240-6. [DOI] [PubMed] [Google Scholar]
  25. Schneider J. W., Gu W., Zhu L., Mahdavi V., Nadal-Ginard B. Reversal of terminal differentiation mediated by p107 in Rb-/- muscle cells. Science. 1994 Jun 3;264(5164):1467–1471. doi: 10.1126/science.8197461. [DOI] [PubMed] [Google Scholar]
  26. Simon András, Brockes Jeremy P. Thrombin activation of S-phase reentry by cultured pigmented epithelial cells of adult newt iris. Exp Cell Res. 2002 Nov 15;281(1):101–106. doi: 10.1006/excr.2002.5650. [DOI] [PubMed] [Google Scholar]
  27. Stone L. S. An investigation recording all salamanders which can and cannot regenerate a lens from the dorsal iris. J Exp Zool. 1967 Feb;164(1):87–103. doi: 10.1002/jez.1401640109. [DOI] [PubMed] [Google Scholar]
  28. Tanaka E. M., Drechsel D. N., Brockes J. P. Thrombin regulates S-phase re-entry by cultured newt myotubes. 1999 Jul 29-Aug 12Curr Biol. 9(15):792–799. doi: 10.1016/s0960-9822(99)80362-5. [DOI] [PubMed] [Google Scholar]
  29. Tanaka E. M., Gann A. A., Gates P. B., Brockes J. P. Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol. 1997 Jan 13;136(1):155–165. doi: 10.1083/jcb.136.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thitoff Angela R., Call Mindy K., Del Rio-Tsonis Katia, Tsonis Panagiotis A. Unique expression patterns of the retinoblastoma (Rb) gene in intact and lens regeneration-undergoing newt eyes. Anat Rec A Discov Mol Cell Evol Biol. 2003 Mar;271(1):185–188. doi: 10.1002/ar.a.10023. [DOI] [PubMed] [Google Scholar]
  31. Velloso C. P., Simon A., Brockes J. P. Mammalian postmitotic nuclei reenter the cell cycle after serum stimulation in newt/mouse hybrid myotubes. Curr Biol. 2001 Jun 5;11(11):855–858. doi: 10.1016/s0960-9822(01)00234-2. [DOI] [PubMed] [Google Scholar]
  32. Yasuda K., Okada T. S., Eguchi G., Hayashi M. A demonstration of a switch of cell type in human fetal eye tissues in vitro: pigmented cells of the iris or the retina can transdifferentiate into lens. Exp Eye Res. 1978 May;26(5):591–595. doi: 10.1016/0014-4835(78)90070-2. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES