Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 May 29;359(1445):745–751. doi: 10.1098/rstb.2004.1463

Cellular and molecular mechanisms of regeneration in Xenopus.

J M W Slack 1, C W Beck 1, C Gargioli 1, B Christen 1
PMCID: PMC1693370  PMID: 15293801

Abstract

We have employed transgenic methods combined with embryonic grafting to analyse the mechanisms of regeneration in Xenopus tadpoles. The Xenopus tadpole tail contains a spinal cord, notochord and segmented muscles, and all tissues are replaced when the tail regenerates after amputation. We show that there is a refractory period of very low regenerative ability in the early tadpole stage. Tracing of cell lineage with the use of single tissue transgenic grafts labelled with green fluorescent protein (GFP) shows that there is no de-differentiation and no metaplasia during regeneration. The spinal cord, notochord and muscle all regenerate from the corresponding tissue in the stump; in the case of the muscle the satellite cells provide the material for regeneration. By using constitutive or dominant negative gene products, induced under the control of a heat shock promoter, we show that the bone morphogenetic protein (BMP) and Notch signalling pathways are both essential for regeneration. BMP is upstream of Notch and has an independent effect on regeneration of muscle. The Xenopus limb bud will regenerate completely at the early stages but regenerative ability falls during digit differentiation. We have developed a procedure for making tadpoles in which one hindlimb is transgenic and the remainder wild-type. This has been used to introduce various gene products expected to prolong the period of regenerative capacity, but none has so far been successful.

Full Text

The Full Text of this article is available as a PDF (895.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck C. W., Slack J. M. A developmental pathway controlling outgrowth of the Xenopus tail bud. Development. 1999 Apr;126(8):1611–1620. doi: 10.1242/dev.126.8.1611. [DOI] [PubMed] [Google Scholar]
  2. Beck C. W., Slack J. M. Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth. Mech Dev. 1998 Mar;72(1-2):41–52. doi: 10.1016/s0925-4773(98)00015-x. [DOI] [PubMed] [Google Scholar]
  3. Beck C. W., Whitman M., Slack J. M. The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. Dev Biol. 2001 Oct 15;238(2):303–314. doi: 10.1006/dbio.2001.0407. [DOI] [PubMed] [Google Scholar]
  4. Beck Caroline W., Christen Bea, Slack Jonathan M. W. Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell. 2003 Sep;5(3):429–439. doi: 10.1016/s1534-5807(03)00233-8. [DOI] [PubMed] [Google Scholar]
  5. Beck Caroline W., Slack Jonathan M. W. Notch is required for outgrowth of the Xenopus tail bud. Int J Dev Biol. 2002 Mar;46(2):255–258. doi: 10.1387/ijdb.011489. [DOI] [PubMed] [Google Scholar]
  6. Cambray Noemí, Wilson Valerie. Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development. 2002 Oct;129(20):4855–4866. doi: 10.1242/dev.129.20.4855. [DOI] [PubMed] [Google Scholar]
  7. Cannata S. M., Bagni C., Bernardini S., Christen B., Filoni S. Nerve-independence of limb regeneration in larval Xenopus laevis is correlated to the level of fgf-2 mRNA expression in limb tissues. Dev Biol. 2001 Mar 15;231(2):436–446. doi: 10.1006/dbio.2001.0161. [DOI] [PubMed] [Google Scholar]
  8. Catala M., Teillet M. A., Le Douarin N. M. Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev. 1995 May;51(1):51–65. doi: 10.1016/0925-4773(95)00350-a. [DOI] [PubMed] [Google Scholar]
  9. Christen B., Slack J. M. All limbs are not the same. Nature. 1998 Sep 17;395(6699):230–231. doi: 10.1038/26133. [DOI] [PubMed] [Google Scholar]
  10. Christen B., Slack J. M. FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev Biol. 1997 Dec 15;192(2):455–466. doi: 10.1006/dbio.1997.8732. [DOI] [PubMed] [Google Scholar]
  11. Coffman C. R., Skoglund P., Harris W. A., Kintner C. R. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell. 1993 May 21;73(4):659–671. doi: 10.1016/0092-8674(93)90247-n. [DOI] [PubMed] [Google Scholar]
  12. DENT J. N. Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad. J Morphol. 1962 Jan;110:61–77. doi: 10.1002/jmor.1051100105. [DOI] [PubMed] [Google Scholar]
  13. Davis R. L., Kirschner M. W. The fate of cells in the tailbud of Xenopus laevis. Development. 2000 Jan;127(2):255–267. doi: 10.1242/dev.127.2.255. [DOI] [PubMed] [Google Scholar]
  14. Echeverri K., Clarke J. D., Tanaka E. M. In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol. 2001 Aug 1;236(1):151–164. doi: 10.1006/dbio.2001.0312. [DOI] [PubMed] [Google Scholar]
  15. Echeverri Karen, Tanaka Elly M. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science. 2002 Dec 6;298(5600):1993–1996. doi: 10.1126/science.1077804. [DOI] [PubMed] [Google Scholar]
  16. Endo T., Yokoyama H., Tamura K., Ide H. Shh expression in developing and regenerating limb buds of Xenopus laevis. Dev Dyn. 1997 Jun;209(2):227–232. doi: 10.1002/(SICI)1097-0177(199706)209:2<227::AID-AJA8>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  17. Filoni S., Bosco L. Comparative analysis of the regenerative capacity of caudal spinal cord in larvae of serveral Anuran amphibian species. Acta Embryol Morphol Exp. 1981 Dec;2(3):199–226. [PubMed] [Google Scholar]
  18. Filoni S., Paglialunga L. Effect of denervation on hindlimb regeneration in Xenopus laevis larvae. Differentiation. 1990 Mar;43(1):10–19. doi: 10.1111/j.1432-0436.1990.tb00425.x. [DOI] [PubMed] [Google Scholar]
  19. Goldman D. C., Martin G. R., Tam P. P. Fate and function of the ventral ectodermal ridge during mouse tail development. Development. 2000 May;127(10):2113–2123. doi: 10.1242/dev.127.10.2113. [DOI] [PubMed] [Google Scholar]
  20. Goss R. J., Holt R. Epimorphic vs. tissue regeneration in Xenopus forelimbs. J Exp Zool. 1992 Apr 1;261(4):451–457. doi: 10.1002/jez.1402610412. [DOI] [PubMed] [Google Scholar]
  21. Griffith C. M., Wiley M. J., Sanders E. J. The vertebrate tail bud: three germ layers from one tissue. Anat Embryol (Berl) 1992;185(2):101–113. doi: 10.1007/BF00185911. [DOI] [PubMed] [Google Scholar]
  22. Hsu D. R., Economides A. N., Wang X., Eimon P. M., Harland R. M. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell. 1998 Apr;1(5):673–683. doi: 10.1016/s1097-2765(00)80067-2. [DOI] [PubMed] [Google Scholar]
  23. Kanki J. P., Ho R. K. The development of the posterior body in zebrafish. Development. 1997 Feb;124(4):881–893. doi: 10.1242/dev.124.4.881. [DOI] [PubMed] [Google Scholar]
  24. Kroll K. L., Amaya E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development. 1996 Oct;122(10):3173–3183. doi: 10.1242/dev.122.10.3173. [DOI] [PubMed] [Google Scholar]
  25. Kumar A., Velloso C. P., Imokawa Y., Brockes J. P. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol. 2000 Feb 15;218(2):125–136. doi: 10.1006/dbio.1999.9569. [DOI] [PubMed] [Google Scholar]
  26. Lo D. C., Allen F., Brockes J. P. Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7230–7234. doi: 10.1073/pnas.90.15.7230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Matsuda H., Yokoyama H., Endo T., Tamura K., Ide H. An epidermal signal regulates Lmx-1 expression and dorsal-ventral pattern during Xenopus limb regeneration. Dev Biol. 2001 Jan 15;229(2):351–362. doi: 10.1006/dbio.2000.9973. [DOI] [PubMed] [Google Scholar]
  28. Mohun T. J., Taylor M. V., Garrett N., Gurdon J. B. The CArG promoter sequence is necessary for muscle-specific transcription of the cardiac actin gene in Xenopus embryos. EMBO J. 1989 Apr;8(4):1153–1161. doi: 10.1002/j.1460-2075.1989.tb03486.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nye Holly L. D., Cameron Jo Ann, Chernoff Ellen A. G., Stocum David L. Regeneration of the urodele limb: a review. Dev Dyn. 2003 Feb;226(2):280–294. doi: 10.1002/dvdy.10236. [DOI] [PubMed] [Google Scholar]
  30. Offield M. F., Hirsch N., Grainger R. M. The development of Xenopus tropicalis transgenic lines and their use in studying lens developmental timing in living embryos. Development. 2000 May;127(9):1789–1797. doi: 10.1242/dev.127.9.1789. [DOI] [PubMed] [Google Scholar]
  31. Pourquié O. Vertebrate somitogenesis. Annu Rev Cell Dev Biol. 2001;17:311–350. doi: 10.1146/annurev.cellbio.17.1.311. [DOI] [PubMed] [Google Scholar]
  32. Seale P., Rudnicki M. A. A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Dev Biol. 2000 Feb 15;218(2):115–124. doi: 10.1006/dbio.1999.9565. [DOI] [PubMed] [Google Scholar]
  33. Seale P., Sabourin L. A., Girgis-Gabardo A., Mansouri A., Gruss P., Rudnicki M. A. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000 Sep 15;102(6):777–786. doi: 10.1016/s0092-8674(00)00066-0. [DOI] [PubMed] [Google Scholar]
  34. Slack J. M. W. Regeneration research today. Dev Dyn. 2003 Feb;226(2):162–166. doi: 10.1002/dvdy.10232. [DOI] [PubMed] [Google Scholar]
  35. Smith W. C., Harland R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992 Sep 4;70(5):829–840. doi: 10.1016/0092-8674(92)90316-5. [DOI] [PubMed] [Google Scholar]
  36. Summerbell D., Lewis J. H., Wolpert L. Positional information in chick limb morphogenesis. Nature. 1973 Aug 24;244(5417):492–496. doi: 10.1038/244492a0. [DOI] [PubMed] [Google Scholar]
  37. TSCHUMI P. A. The growth of the hindlimb bud of Xenopus laevis and its dependence upon the epidermis. J Anat. 1957 Apr;91(2):149–173. [PMC free article] [PubMed] [Google Scholar]
  38. Tucker A. S., Slack J. M. Tail bud determination in the vertebrate embryo. Curr Biol. 1995 Jul 1;5(7):807–813. doi: 10.1016/s0960-9822(95)00158-8. [DOI] [PubMed] [Google Scholar]
  39. Wheeler G. N., Hamilton F. S., Hoppler S. Inducible gene expression in transgenic Xenopus embryos. Curr Biol. 2000 Jul 13;10(14):849–852. doi: 10.1016/s0960-9822(00)00596-0. [DOI] [PubMed] [Google Scholar]
  40. Yokoyama H., Ide H., Tamura K. FGF-10 stimulates limb regeneration ability in Xenopus laevis. Dev Biol. 2001 May 1;233(1):72–79. doi: 10.1006/dbio.2001.0180. [DOI] [PubMed] [Google Scholar]
  41. Yokoyama H., Yonei-Tamura S., Endo T., Izpisúa Belmonte J. C., Tamura K., Ide H. Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds. Dev Biol. 2000 Mar 1;219(1):18–29. doi: 10.1006/dbio.1999.9587. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES