Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Jun 29;359(1446):929–941. doi: 10.1098/rstb.2003.1415

A common neuronal code for perceptual processes in visual cortex? Comparing choice and attentional correlates in V5/MT.

Kristine Krug 1
PMCID: PMC1693376  PMID: 15306408

Abstract

In the past two decades, sensory neuroscience has moved from describing response properties to external stimuli in cerebral cortex to establishing connections between neuronal activity and sensory perception. The seminal studies by Newsome, Movshon and colleagues in the awake behaving macaque firmly link single cells in extrastriate area V5/MT and perception of motion. A decade later, extrastriate visual cortex appears awash with neuronal correlates for many different perceptual tasks. Examples are attentional signals, choice signals for ambiguous images, correlates for binocular rivalry, stereo and shape perception, and so on. These diverse paradigms are aimed at elucidating the neuronal code for perceptual processes, but it has been little studied how they directly compare or even interact. In this paper, I explore to what degree the measured neuronal signals in V5/MT for choice and attentional paradigms might reflect a common neuronal mechanism for visual perception.

Full Text

The Full Text of this article is available as a PDF (351.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albright T. D., Desimone R., Gross C. G. Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol. 1984 Jan;51(1):16–31. doi: 10.1152/jn.1984.51.1.16. [DOI] [PubMed] [Google Scholar]
  2. Allman J. M., Kaas J. H. A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). Brain Res. 1971 Aug 7;31(1):85–105. doi: 10.1016/0006-8993(71)90635-4. [DOI] [PubMed] [Google Scholar]
  3. Bair W., Zohary E., Newsome W. T. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J Neurosci. 2001 Mar 1;21(5):1676–1697. doi: 10.1523/JNEUROSCI.21-05-01676.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barlow H. B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception. 1972;1(4):371–394. doi: 10.1068/p010371. [DOI] [PubMed] [Google Scholar]
  5. Baumann R., van der Zwan R., Peterhans E. Figure-ground segregation at contours: a neural mechanism in the visual cortex of the alert monkey. Eur J Neurosci. 1997 Jun;9(6):1290–1303. doi: 10.1111/j.1460-9568.1997.tb01484.x. [DOI] [PubMed] [Google Scholar]
  6. Bisley J. W., Zaksas D., Pasternak T. Microstimulation of cortical area MT affects performance on a visual working memory task. J Neurophysiol. 2001 Jan;85(1):187–196. doi: 10.1152/jn.2001.85.1.187. [DOI] [PubMed] [Google Scholar]
  7. Blatt G. J., Andersen R. A., Stoner G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol. 1990 Sep 22;299(4):421–445. doi: 10.1002/cne.902990404. [DOI] [PubMed] [Google Scholar]
  8. Bradley D. C., Chang G. C., Andersen R. A. Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature. 1998 Apr 16;392(6677):714–717. doi: 10.1038/33688. [DOI] [PubMed] [Google Scholar]
  9. Bradley D. C., Qian N., Andersen R. A. Integration of motion and stereopsis in middle temporal cortical area of macaques. Nature. 1995 Feb 16;373(6515):609–611. doi: 10.1038/373609a0. [DOI] [PubMed] [Google Scholar]
  10. Britten K. H., Newsome W. T., Shadlen M. N., Celebrini S., Movshon J. A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci. 1996 Jan-Feb;13(1):87–100. doi: 10.1017/s095252380000715x. [DOI] [PubMed] [Google Scholar]
  11. Britten K. H., Shadlen M. N., Newsome W. T., Movshon J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci. 1992 Dec;12(12):4745–4765. doi: 10.1523/JNEUROSCI.12-12-04745.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Britten K. H., van Wezel R. J. Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci. 1998 May;1(1):59–63. doi: 10.1038/259. [DOI] [PubMed] [Google Scholar]
  13. Connor C. E., Gallant J. L., Preddie D. C., Van Essen D. C. Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol. 1996 Mar;75(3):1306–1308. doi: 10.1152/jn.1996.75.3.1306. [DOI] [PubMed] [Google Scholar]
  14. Cook Erik P., Maunsell John H. R. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J Neurosci. 2002 Mar 1;22(5):1994–2004. doi: 10.1523/JNEUROSCI.22-05-01994.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cook Erik P., Maunsell John H. R. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci. 2002 Oct;5(10):985–994. doi: 10.1038/nn924. [DOI] [PubMed] [Google Scholar]
  16. DeAngelis G. C., Cumming B. G., Newsome W. T. Cortical area MT and the perception of stereoscopic depth. Nature. 1998 Aug 13;394(6694):677–680. doi: 10.1038/29299. [DOI] [PubMed] [Google Scholar]
  17. DeAngelis G. C., Newsome W. T. Organization of disparity-selective neurons in macaque area MT. J Neurosci. 1999 Feb 15;19(4):1398–1415. doi: 10.1523/JNEUROSCI.19-04-01398.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/annurev.ne.18.030195.001205. [DOI] [PubMed] [Google Scholar]
  19. Dodd J. V., Krug K., Cumming B. G., Parker A. J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J Neurosci. 2001 Jul 1;21(13):4809–4821. doi: 10.1523/JNEUROSCI.21-13-04809.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dubner R., Zeki S. M. Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res. 1971 Dec 24;35(2):528–532. doi: 10.1016/0006-8993(71)90494-x. [DOI] [PubMed] [Google Scholar]
  21. Ghose Geoffrey M., Maunsell John H. R. Attentional modulation in visual cortex depends on task timing. Nature. 2002 Oct 10;419(6907):616–620. doi: 10.1038/nature01057. [DOI] [PubMed] [Google Scholar]
  22. Gold J. I., Shadlen M. N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn Sci. 2001 Jan 1;5(1):10–16. doi: 10.1016/s1364-6613(00)01567-9. [DOI] [PubMed] [Google Scholar]
  23. Gold Joshua I., Shadlen Michael N. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J Neurosci. 2003 Jan 15;23(2):632–651. doi: 10.1523/JNEUROSCI.23-02-00632.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Grunewald Alexander, Bradley David C., Andersen Richard A. Neural correlates of structure-from-motion perception in macaque V1 and MT. J Neurosci. 2002 Jul 15;22(14):6195–6207. doi: 10.1523/JNEUROSCI.22-14-06195.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Logothetis N. K., Schall J. D. Neuronal correlates of subjective visual perception. Science. 1989 Aug 18;245(4919):761–763. doi: 10.1126/science.2772635. [DOI] [PubMed] [Google Scholar]
  26. Martínez-Trujillo Julio, Treue Stefan. Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron. 2002 Jul 18;35(2):365–370. doi: 10.1016/s0896-6273(02)00778-x. [DOI] [PubMed] [Google Scholar]
  27. Maunsell J. H. The brain's visual world: representation of visual targets in cerebral cortex. Science. 1995 Nov 3;270(5237):764–769. doi: 10.1126/science.270.5237.764. [DOI] [PubMed] [Google Scholar]
  28. Maunsell J. H., Van Essen D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol. 1983 May;49(5):1148–1167. doi: 10.1152/jn.1983.49.5.1148. [DOI] [PubMed] [Google Scholar]
  29. Maunsell J. H., van Essen D. C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci. 1983 Dec;3(12):2563–2586. doi: 10.1523/JNEUROSCI.03-12-02563.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Motter B. C. Neural correlates of attentive selection for color or luminance in extrastriate area V4. J Neurosci. 1994 Apr;14(4):2178–2189. doi: 10.1523/JNEUROSCI.14-04-02178.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Movshon J. A., Newsome W. T. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci. 1996 Dec 1;16(23):7733–7741. doi: 10.1523/JNEUROSCI.16-23-07733.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Parker A. J., Newsome W. T. Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci. 1998;21:227–277. doi: 10.1146/annurev.neuro.21.1.227. [DOI] [PubMed] [Google Scholar]
  33. Parker Andrew J., Krug Kristine, Cumming Bruce G. Neuronal activity and its links with the perception of multi-stable figures. Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29;357(1424):1053–1062. doi: 10.1098/rstb.2002.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Peterhans E., von der Heydt R. Subjective contours--bridging the gap between psychophysics and physiology. Trends Neurosci. 1991 Mar;14(3):112–119. doi: 10.1016/0166-2236(91)90072-3. [DOI] [PubMed] [Google Scholar]
  35. Salzman C. D., Britten K. H., Newsome W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature. 1990 Jul 12;346(6280):174–177. doi: 10.1038/346174a0. [DOI] [PubMed] [Google Scholar]
  36. Seidemann E., Newsome W. T. Effect of spatial attention on the responses of area MT neurons. J Neurophysiol. 1999 Apr;81(4):1783–1794. doi: 10.1152/jn.1999.81.4.1783. [DOI] [PubMed] [Google Scholar]
  37. Shadlen M. N., Britten K. H., Newsome W. T., Movshon J. A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J Neurosci. 1996 Feb 15;16(4):1486–1510. doi: 10.1523/JNEUROSCI.16-04-01486.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shadlen M. N., Newsome W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol. 2001 Oct;86(4):1916–1936. doi: 10.1152/jn.2001.86.4.1916. [DOI] [PubMed] [Google Scholar]
  39. Sheinberg D. L., Logothetis N. K. The role of temporal cortical areas in perceptual organization. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3408–3413. doi: 10.1073/pnas.94.7.3408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sigala Natasha, Logothetis Nikos K. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature. 2002 Jan 17;415(6869):318–320. doi: 10.1038/415318a. [DOI] [PubMed] [Google Scholar]
  41. Thiele A., Distler C., Hoffmann K. P. Decision-related activity in the macaque dorsal visual pathway. Eur J Neurosci. 1999 Jun;11(6):2044–2058. doi: 10.1046/j.1460-9568.1999.00630.x. [DOI] [PubMed] [Google Scholar]
  42. Treue S., Martínez Trujillo J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature. 1999 Jun 10;399(6736):575–579. doi: 10.1038/21176. [DOI] [PubMed] [Google Scholar]
  43. Treue S., Maunsell J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature. 1996 Aug 8;382(6591):539–541. doi: 10.1038/382539a0. [DOI] [PubMed] [Google Scholar]
  44. Treue S., Maunsell J. H. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci. 1999 Sep 1;19(17):7591–7602. doi: 10.1523/JNEUROSCI.19-17-07591.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ullman S. The interpretation of structure from motion. Proc R Soc Lond B Biol Sci. 1979 Jan 15;203(1153):405–426. doi: 10.1098/rspb.1979.0006. [DOI] [PubMed] [Google Scholar]
  46. Ungerleider L. G., Desimone R. Cortical connections of visual area MT in the macaque. J Comp Neurol. 1986 Jun 8;248(2):190–222. doi: 10.1002/cne.902480204. [DOI] [PubMed] [Google Scholar]
  47. Zeki S. M. Cells responding to changing image size and disparity in the cortex of the rhesus monkey. J Physiol. 1974 Nov;242(3):827–841. doi: 10.1113/jphysiol.1974.sp010736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zeki S. M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol. 1974 Feb;236(3):549–573. doi: 10.1113/jphysiol.1974.sp010452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zeki S., Shipp S. The functional logic of cortical connections. Nature. 1988 Sep 22;335(6188):311–317. doi: 10.1038/335311a0. [DOI] [PubMed] [Google Scholar]
  50. Zhou H., Friedman H. S., von der Heydt R. Coding of border ownership in monkey visual cortex. J Neurosci. 2000 Sep 1;20(17):6594–6611. doi: 10.1523/JNEUROSCI.20-17-06594.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zohary E., Shadlen M. N., Newsome W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature. 1994 Jul 14;370(6485):140–143. doi: 10.1038/370140a0. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES