Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Jun 29;359(1446):1021–1044. doi: 10.1098/rstb.2004.1477

Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component?

Claire E Sears 1, Euan A Ashley 1, Barbara Casadei 1
PMCID: PMC1693378  PMID: 15306414

Abstract

Nitric oxide (NO) has been shown to regulate cardiac function, both in physiological conditions and in disease states. However, several aspects of NO signalling in the myocardium remain poorly understood. It is becoming increasingly apparent that the disparate functions ascribed to NO result from its generation by different isoforms of the NO synthase (NOS) enzyme, the varying subcellular localization and regulation of NOS isoforms and their effector proteins. Some apparently contrasting findings may have arisen from the use of non-isoform-specific inhibitors of NOS, and from the assumption that NO donors may be able to mimic the actions of endogenously produced NO. In recent years an at least partial explanation for some of the disagreements, although by no means all, may be found from studies that have focused on the role of the neuronal NOS (nNOS) isoform. These data have shown a key role for nNOS in the control of basal and adrenergically stimulated cardiac contractility and in the autonomic control of heart rate. Whether or not the role of nNOS carries implications for cardiovascular disease remains an intriguing possibility requiring future study.

Full Text

The Full Text of this article is available as a PDF (429.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adak S., Santolini J., Tikunova S., Wang Q., Johnson J. D., Stuehr D. J. Neuronal nitric-oxide synthase mutant (Ser-1412 --> Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis. J Biol Chem. 2001 Jan 12;276(2):1244–1252. doi: 10.1074/jbc.M006857200. [DOI] [PubMed] [Google Scholar]
  2. Ahn A. H., Freener C. A., Gussoni E., Yoshida M., Ozawa E., Kunkel L. M. The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal locations, and each bind to dystrophin and its relatives. J Biol Chem. 1996 Feb 2;271(5):2724–2730. doi: 10.1074/jbc.271.5.2724. [DOI] [PubMed] [Google Scholar]
  3. Allen T. J. Temperature dependence of macroscopic L-type calcium channel currents in single guinea pig ventricular myocytes. J Cardiovasc Electrophysiol. 1996 Apr;7(4):307–321. doi: 10.1111/j.1540-8167.1996.tb00532.x. [DOI] [PubMed] [Google Scholar]
  4. Amrani M., O'Shea J., Allen N. J., Harding S. E., Jayakumar J., Pepper J. R., Moncada S., Yacoub M. H. Role of basal release of nitric oxide on coronary flow and mechanical performance of the isolated rat heart. J Physiol. 1992 Oct;456:681–687. doi: 10.1113/jphysiol.1992.sp019361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Balligand J. L., Kelly R. A., Marsden P. A., Smith T. W., Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):347–351. doi: 10.1073/pnas.90.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Balligand J. L. Regulation of cardiac beta-adrenergic response by nitric oxide. Cardiovasc Res. 1999 Aug 15;43(3):607–620. doi: 10.1016/s0008-6363(99)00163-7. [DOI] [PubMed] [Google Scholar]
  7. Barouch Lili A., Harrison Robert W., Skaf Michel W., Rosas Gisele O., Cappola Thomas P., Kobeissi Zoulficar A., Hobai Ion A., Lemmon Christopher A., Burnett Arthur L., O'Rourke Brian. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature. 2002 Mar 21;416(6878):337–339. doi: 10.1038/416337a. [DOI] [PubMed] [Google Scholar]
  8. Barrett Carolyn J., Ramchandra Rohit, Guild Sarah-Jane, Lala Aneela, Budgett David M., Malpas Simon C. What sets the long-term level of renal sympathetic nerve activity: a role for angiotensin II and baroreflexes? Circ Res. 2003 May 22;92(12):1330–1336. doi: 10.1161/01.RES.0000078346.60663.A0. [DOI] [PubMed] [Google Scholar]
  9. Belevych A. E., Harvey R. D. Muscarinic inhibitory and stimulatory regulation of the L-type Ca2+ current is not altered in cardiac ventricular myocytes from mice lacking endothelial nitric oxide synthase. J Physiol. 2000 Oct 15;528(Pt 2):279–289. doi: 10.1111/j.1469-7793.2000.00279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bell Robert M., Maddock Helen L., Yellon Derek M. The cardioprotective and mitochondrial depolarising properties of exogenous nitric oxide in mouse heart. Cardiovasc Res. 2003 Feb;57(2):405–415. doi: 10.1016/s0008-6363(02)00675-2. [DOI] [PubMed] [Google Scholar]
  11. Bender A. T., Silverstein A. M., Demady D. R., Kanelakis K. C., Noguchi S., Pratt W. B., Osawa Y. Neuronal nitric-oxide synthase is regulated by the Hsp90-based chaperone system in vivo. J Biol Chem. 1999 Jan 15;274(3):1472–1478. doi: 10.1074/jbc.274.3.1472. [DOI] [PubMed] [Google Scholar]
  12. Bett Glenna C. L., Dai Shuiping, Campbell Donald L. Cholinergic modulation of the basal L-type calcium current in ferret right ventricular myocytes. J Physiol. 2002 Jul 1;542(Pt 1):107–117. doi: 10.1113/jphysiol.2002.017335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bia B. L., Cassidy P. J., Young M. E., Rafael J. A., Leighton B., Davies K. E., Radda G. K., Clarke K. Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of Duchenne muscular dystrophy. J Mol Cell Cardiol. 1999 Oct;31(10):1857–1862. doi: 10.1006/jmcc.1999.1018. [DOI] [PubMed] [Google Scholar]
  14. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001 Nov;33(11):1897–1918. doi: 10.1006/jmcc.2001.1462. [DOI] [PubMed] [Google Scholar]
  15. Borutaité V., Brown G. C. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J. 1996 Apr 1;315(Pt 1):295–299. doi: 10.1042/bj3150295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Brady A. J., Warren J. B., Poole-Wilson P. A., Williams T. J., Harding S. E. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol. 1993 Jul;265(1 Pt 2):H176–H182. doi: 10.1152/ajpheart.1993.265.1.H176. [DOI] [PubMed] [Google Scholar]
  17. Brahmajothi M. V., Campbell D. L. Heterogeneous basal expression of nitric oxide synthase and superoxide dismutase isoforms in mammalian heart : implications for mechanisms governing indirect and direct nitric oxide-related effects. Circ Res. 1999 Oct 1;85(7):575–587. doi: 10.1161/01.res.85.7.575. [DOI] [PubMed] [Google Scholar]
  18. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Brenman J. E., Chao D. S., Xia H., Aldape K., Bredt D. S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell. 1995 Sep 8;82(5):743–752. doi: 10.1016/0092-8674(95)90471-9. [DOI] [PubMed] [Google Scholar]
  20. Brenman J. E., Xia H., Chao D. S., Black S. M., Bredt D. S. Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev Neurosci. 1997;19(3):224–231. doi: 10.1159/000111211. [DOI] [PubMed] [Google Scholar]
  21. Brown G. C., McBride A. G., Fox E. J., McNaught K. S., Borutaite V. Nitric oxide and oxygen metabolism. Biochem Soc Trans. 1997 Aug;25(3):901–904. doi: 10.1042/bst0250901. [DOI] [PubMed] [Google Scholar]
  22. Brunner F., Andrew P., Wölkart G., Zechner R., Mayer B. Myocardial contractile function and heart rate in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Circulation. 2001 Dec 18;104(25):3097–3102. doi: 10.1161/hc5001.101966. [DOI] [PubMed] [Google Scholar]
  23. Brunner Friedrich, Maier Robert, Andrew Penelope, Wölkart Gerald, Zechner Rudolf, Mayer Bernd. Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res. 2003 Jan;57(1):55–62. doi: 10.1016/s0008-6363(02)00649-1. [DOI] [PubMed] [Google Scholar]
  24. Campbell D. L., Stamler J. S., Strauss H. C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol. 1996 Oct;108(4):277–293. doi: 10.1085/jgp.108.4.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Casadei Barbara, Sears Claire E. Nitric-oxide-mediated regulation of cardiac contractility and stretch responses. Prog Biophys Mol Biol. 2003 May-Jul;82(1-3):67–80. doi: 10.1016/s0079-6107(03)00006-3. [DOI] [PubMed] [Google Scholar]
  26. Cheah L. S., Gwee Mce, Das R., Ballard H., Yang Y. F., Daniel E. E., Kwan C. Y. Evidence for the existence of a constitutive nitric oxide synthase in vascular smooth muscle. Clin Exp Pharmacol Physiol. 2002 Aug;29(8):725–727. doi: 10.1046/j.1440-1681.2002.03707.x. [DOI] [PubMed] [Google Scholar]
  27. Choate J. K., Danson E. J., Morris J. F., Paterson D. J. Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. Am J Physiol Heart Circ Physiol. 2001 Dec;281(6):H2310–H2317. doi: 10.1152/ajpheart.2001.281.6.H2310. [DOI] [PubMed] [Google Scholar]
  28. Choate J. K., Paterson D. J. Nitric oxide inhibits the positive chronotropic and inotropic responses to sympathetic nerve stimulation in the isolated guinea-pig atria. J Auton Nerv Syst. 1999 Feb 15;75(2-3):100–108. doi: 10.1016/s0165-1838(98)00173-8. [DOI] [PubMed] [Google Scholar]
  29. Chowdhary S., Harrington D., Bonser R. S., Coote J. H., Townend J. N. Chronotropic effects of nitric oxide in the denervated human heart. J Physiol. 2002 Jun 1;541(Pt 2):645–651. doi: 10.1113/jphysiol.2001.015107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Chowdhary S., Vaile J. C., Fletcher J., Ross H. F., Coote J. H., Townend J. N. Nitric oxide and cardiac autonomic control in humans. Hypertension. 2000 Aug;36(2):264–269. doi: 10.1161/01.hyp.36.2.264. [DOI] [PubMed] [Google Scholar]
  31. Clavier N., Tobin J. R., Kirsch J. R., Izuta M., Traystman R. J. Brain nitric oxide synthase activity in normal, hypertensive, and stroke-prone rats. Stroke. 1994 Aug;25(8):1674–1678. doi: 10.1161/01.str.25.8.1674. [DOI] [PubMed] [Google Scholar]
  32. Cole C. R., Blackstone E. H., Pashkow F. J., Snader C. E., Lauer M. S. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 1999 Oct 28;341(18):1351–1357. doi: 10.1056/NEJM199910283411804. [DOI] [PubMed] [Google Scholar]
  33. Conlon K., Collins T., Kidd C. Modulation of vagal actions on heart rate produced by inhibition of nitric oxide synthase in the anaesthetized ferret. Exp Physiol. 1996 May;81(3):547–550. doi: 10.1113/expphysiol.1996.sp003957. [DOI] [PubMed] [Google Scholar]
  34. Conlon K., Collins T., Kidd C. The role of nitric oxide in the control by the vagal nerves of the heart of the ferret. Exp Physiol. 1998 Jul;83(4):469–480. doi: 10.1113/expphysiol.1998.sp004130. [DOI] [PubMed] [Google Scholar]
  35. Conlon K., Kidd C. Neuronal nitric oxide facilitates vagal chronotropic and dromotropic actions on the heart. J Auton Nerv Syst. 1999 Feb 15;75(2-3):136–146. doi: 10.1016/s0165-1838(98)00185-4. [DOI] [PubMed] [Google Scholar]
  36. Cotton J. M., Kearney M. T., MacCarthy P. A., Grocott-Mason R. M., McClean D. R., Heymes C., Richardson P. J., Shah A. M. Effects of nitric oxide synthase inhibition on Basal function and the force-frequency relationship in the normal and failing human heart in vivo. Circulation. 2001 Nov 6;104(19):2318–2323. doi: 10.1161/hc4401.098515. [DOI] [PubMed] [Google Scholar]
  37. Crystal G. J., Gurevicius J. Nitric oxide does not modulate myocardial contractility acutely in in situ canine hearts. Am J Physiol. 1996 May;270(5 Pt 2):H1568–H1576. doi: 10.1152/ajpheart.1996.270.5.H1568. [DOI] [PubMed] [Google Scholar]
  38. Damy Thibaud, Ratajczak Philippe, Robidel Estelle, Bendall Jennifer K., Oliviéro Patricia, Boczkowski Jorge, Ebrahimian Talin, Marotte Françoise, Samuel Jane-Lise, Heymes Christophe. Up-regulation of cardiac nitric oxide synthase 1-derived nitric oxide after myocardial infarction in senescent rats. FASEB J. 2003 Aug 1;17(13):1934–1936. doi: 10.1096/fj.02-1208fje. [DOI] [PubMed] [Google Scholar]
  39. Daniel E. E., Jury J., Wang Y. F. nNOS in canine lower esophageal sphincter: colocalized with Cav-1 and Ca2+-handling proteins? Am J Physiol Gastrointest Liver Physiol. 2001 Oct;281(4):G1101–G1114. doi: 10.1152/ajpgi.2001.281.4.G1101. [DOI] [PubMed] [Google Scholar]
  40. Danson E. J. F., Paterson D. J. Enhanced neuronal nitric oxide synthase expression is central to cardiac vagal phenotype in exercise-trained mice. J Physiol. 2003 Jan 1;546(Pt 1):225–232. doi: 10.1113/jphysiol.2002.031781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. De Ferrari G. M., Vanoli E., Stramba-Badiale M., Hull S. S., Jr, Foreman R. D., Schwartz P. J. Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with healed myocardial infarction. Am J Physiol. 1991 Jul;261(1 Pt 2):H63–H69. doi: 10.1152/ajpheart.1991.261.1.H63. [DOI] [PubMed] [Google Scholar]
  42. Dedkova Elena N., Blatter Lothar A. Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol. 2002 Feb 15;539(Pt 1):77–91. doi: 10.1113/jphysiol.2001.013258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Dimmeler S., Fleming I., Fisslthaler B., Hermann C., Busse R., Zeiher A. M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999 Jun 10;399(6736):601–605. doi: 10.1038/21224. [DOI] [PubMed] [Google Scholar]
  44. Dinerman J. L., Steiner J. P., Dawson T. M., Dawson V., Snyder S. H. Cyclic nucleotide dependent phosphorylation of neuronal nitric oxide synthase inhibits catalytic activity. Neuropharmacology. 1994 Nov;33(11):1245–1251. doi: 10.1016/0028-3908(94)90023-x. [DOI] [PubMed] [Google Scholar]
  45. Du Z. Y., Dusting G. J., Woodman O. L. Baroreceptor reflexes and vascular reactivity during inhibition of nitric oxide synthesis in conscious rabbits. Eur J Pharmacol. 1992 Apr 7;214(1):21–26. doi: 10.1016/0014-2999(92)90090-q. [DOI] [PubMed] [Google Scholar]
  46. Dun N. J., Dun S. L., Förstermann U. Nitric oxide synthase immunoreactivity in rat pontine medullary neurons. Neuroscience. 1994 Mar;59(2):429–445. doi: 10.1016/0306-4522(94)90607-6. [DOI] [PubMed] [Google Scholar]
  47. Eisner D. A., Trafford A. W. No Role for the Ryanodine Receptor in Regulating Cardiac Contraction? News Physiol Sci. 2000 Oct;15(NaN):275–279. doi: 10.1152/physiologyonline.2000.15.5.275. [DOI] [PubMed] [Google Scholar]
  48. Elvan A., Rubart M., Zipes D. P. NO modulates autonomic effects on sinus discharge rate and AV nodal conduction in open-chest dogs. Am J Physiol. 1997 Jan;272(1 Pt 2):H263–H271. doi: 10.1152/ajpheart.1997.272.1.H263. [DOI] [PubMed] [Google Scholar]
  49. Feelisch M. The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedebergs Arch Pharmacol. 1998 Jul;358(1):113–122. doi: 10.1007/pl00005231. [DOI] [PubMed] [Google Scholar]
  50. Finkel M. S., Oddis C. V., Mayer O. H., Hattler B. G., Simmons R. L. Nitric oxide synthase inhibitor alters papillary muscle force-frequency relationship. J Pharmacol Exp Ther. 1995 Feb;272(2):945–952. [PubMed] [Google Scholar]
  51. Flesch M., Kilter H., Cremers B., Lenz O., Südkamp M., Kuhn-Regnier F., Böhm M. Acute effects of nitric oxide and cyclic GMP on human myocardial contractility. J Pharmacol Exp Ther. 1997 Jun;281(3):1340–1349. [PubMed] [Google Scholar]
  52. Flögel U., Merx M. W., Godecke A., Decking U. K., Schrader J. Myoglobin: A scavenger of bioactive NO. Proc Natl Acad Sci U S A. 2001 Jan 2;98(2):735–740. doi: 10.1073/pnas.011460298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. French S., Giulivi C., Balaban R. S. Nitric oxide synthase in porcine heart mitochondria: evidence for low physiological activity. Am J Physiol Heart Circ Physiol. 2001 Jun;280(6):H2863–H2867. doi: 10.1152/ajpheart.2001.280.6.H2863. [DOI] [PubMed] [Google Scholar]
  54. Fukuchi M., Hussain S. N., Giaid A. Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: their relation to lesion site and beta-adrenergic receptor therapy. Circulation. 1998 Jul 14;98(2):132–139. doi: 10.1161/01.cir.98.2.132. [DOI] [PubMed] [Google Scholar]
  55. Fulton D., Gratton J. P., McCabe T. J., Fontana J., Fujio Y., Walsh K., Franke T. F., Papapetropoulos A., Sessa W. C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999 Jun 10;399(6736):597–601. doi: 10.1038/21218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  57. Gallo M. P., Ghigo D., Bosia A., Alloatti G., Costamagna C., Penna C., Levi R. C. Modulation of guinea-pig cardiac L-type calcium current by nitric oxide synthase inhibitors. J Physiol. 1998 Feb 1;506(Pt 3):639–651. doi: 10.1111/j.1469-7793.1998.639bv.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Gallo M. P., Malan D., Bedendi I., Biasin C., Alloatti G., Levi R. C. Regulation of cardiac calcium current by NO and cGMP-modulating agents. Pflugers Arch. 2001 Feb;441(5):621–628. doi: 10.1007/s004240000475. [DOI] [PubMed] [Google Scholar]
  59. García-Cardeña G., Fan R., Shah V., Sorrentino R., Cirino G., Papapetropoulos A., Sessa W. C. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998 Apr 23;392(6678):821–824. doi: 10.1038/33934. [DOI] [PubMed] [Google Scholar]
  60. Garthwaite J., Charles S. L., Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988 Nov 24;336(6197):385–388. doi: 10.1038/336385a0. [DOI] [PubMed] [Google Scholar]
  61. Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 1991 Feb;14(2):60–67. doi: 10.1016/0166-2236(91)90022-m. [DOI] [PubMed] [Google Scholar]
  62. Gauthier C., Leblais V., Kobzik L., Trochu J. N., Khandoudi N., Bril A., Balligand J. L., Le Marec H. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest. 1998 Oct 1;102(7):1377–1384. doi: 10.1172/JCI2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Gauthier C., Tavernier G., Charpentier F., Langin D., Le Marec H. Functional beta3-adrenoceptor in the human heart. J Clin Invest. 1996 Jul 15;98(2):556–562. doi: 10.1172/JCI118823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Grocott-Mason R., Fort S., Lewis M. J., Shah A. M. Myocardial relaxant effect of exogenous nitric oxide in isolated ejecting hearts. Am J Physiol. 1994 May;266(5 Pt 2):H1699–H1705. doi: 10.1152/ajpheart.1994.266.5.H1699. [DOI] [PubMed] [Google Scholar]
  65. Gyurko R., Kuhlencordt P., Fishman M. C., Huang P. L. Modulation of mouse cardiac function in vivo by eNOS and ANP. Am J Physiol Heart Circ Physiol. 2000 Mar;278(3):H971–H981. doi: 10.1152/ajpheart.2000.278.3.H971. [DOI] [PubMed] [Google Scholar]
  66. Gyurko Robert, Leupen Sarah, Huang Paul L. Deletion of exon 6 of the neuronal nitric oxide synthase gene in mice results in hypogonadism and infertility. Endocrinology. 2002 Jul;143(7):2767–2774. doi: 10.1210/endo.143.7.8921. [DOI] [PubMed] [Google Scholar]
  67. Gödecke A., Decking U. K., Ding Z., Hirchenhain J., Bidmon H. J., Gödecke S., Schrader J. Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res. 1998 Feb 9;82(2):186–194. doi: 10.1161/01.res.82.2.186. [DOI] [PubMed] [Google Scholar]
  68. Gödecke A., Heinicke T., Kamkin A., Kiseleva I., Strasser R. H., Decking U. K., Stumpe T., Isenberg G., Schrader J. Inotropic response to beta-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol. 2001 Apr 1;532(Pt 1):195–204. doi: 10.1111/j.1469-7793.2001.0195g.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Han X., Kobzik L., Balligand J. L., Kelly R. A., Smith T. W. Nitric oxide synthase (NOS3)-mediated cholinergic modulation of Ca2+ current in adult rabbit atrioventricular nodal cells. Circ Res. 1996 Jun;78(6):998–1008. doi: 10.1161/01.res.78.6.998. [DOI] [PubMed] [Google Scholar]
  70. Han X., Kobzik L., Severson D., Shimoni Y. Characteristics of nitric oxide-mediated cholinergic modulation of calcium current in rabbit sino-atrial node. J Physiol. 1998 Jun 15;509(Pt 3):741–754. doi: 10.1111/j.1469-7793.1998.741bm.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Han X., Kubota I., Feron O., Opel D. J., Arstall M. A., Zhao Y. Y., Huang P., Fishman M. C., Michel T., Kelly R. A. Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6510–6515. doi: 10.1073/pnas.95.11.6510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Han X., Shimoni Y., Giles W. R. An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol. 1994 Apr 15;476(2):309–314. doi: 10.1113/jphysiol.1994.sp020132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Hansen J., Jacobsen T. N., Victor R. G. Is nitric oxide involved in the tonic inhibition of central sympathetic outflow in humans? Hypertension. 1994 Oct;24(4):439–444. doi: 10.1161/01.hyp.24.4.439. [DOI] [PubMed] [Google Scholar]
  74. Harada S., Tokunaga S., Momohara M., Masaki H., Tagawa T., Imaizumi T., Takeshita A. Inhibition of nitric oxide formation in the nucleus tractus solitarius increases renal sympathetic nerve activity in rabbits. Circ Res. 1993 Mar;72(3):511–516. doi: 10.1161/01.res.72.3.511. [DOI] [PubMed] [Google Scholar]
  75. Harding S. E., Davies C. H., Money-Kyrle A. M., Poole-Wilson P. A. An inhibitor of nitric oxide synthase does not increase contraction or beta-adrenoceptor sensitivity of ventricular myocytes from failing human heart. Cardiovasc Res. 1998 Dec;40(3):523–529. doi: 10.1016/s0008-6363(98)00188-6. [DOI] [PubMed] [Google Scholar]
  76. Hare J. M., Keaney J. F., Jr, Balligand J. L., Loscalzo J., Smith T. W., Colucci W. S. Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest. 1995 Jan;95(1):360–366. doi: 10.1172/JCI117664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Hartzell H. C., Fischmeister R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature. 1986 Sep 18;323(6085):273–275. doi: 10.1038/323273a0. [DOI] [PubMed] [Google Scholar]
  78. Hasenfuss Gerd, Pieske Burkert. Calcium cycling in congestive heart failure. J Mol Cell Cardiol. 2002 Aug;34(8):951–969. doi: 10.1006/jmcc.2002.2037. [DOI] [PubMed] [Google Scholar]
  79. Haywood G. A., Tsao P. S., von der Leyen H. E., Mann M. J., Keeling P. J., Trindade P. T., Lewis N. P., Byrne C. D., Rickenbacher P. R., Bishopric N. H. Expression of inducible nitric oxide synthase in human heart failure. Circulation. 1996 Mar 15;93(6):1087–1094. doi: 10.1161/01.cir.93.6.1087. [DOI] [PubMed] [Google Scholar]
  80. Heger Jacqueline, Gödecke Axel, Flögel Ulrich, Merx Marc W., Molojavyi Andrei, Kühn-Velten W. Nikolaus, Schrader Jürgen. Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ Res. 2002 Jan 11;90(1):93–99. doi: 10.1161/hh0102.102757. [DOI] [PubMed] [Google Scholar]
  81. Herring N., Golding S., Paterson D. J. Pre-synaptic NO-cGMP pathway modulates vagal control of heart rate in isolated adult guinea pig atria. J Mol Cell Cardiol. 2000 Oct;32(10):1795–1804. doi: 10.1006/jmcc.2000.1214. [DOI] [PubMed] [Google Scholar]
  82. Herring N., Paterson D. J. Nitric oxide-cGMP pathway facilitates acetylcholine release and bradycardia during vagal nerve stimulation in the guinea-pig in vitro. J Physiol. 2001 Sep 1;535(Pt 2):507–518. doi: 10.1111/j.1469-7793.2001.00507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Hogan N., Casadei B., Paterson D. J. Nitric oxide donors can increase heart rate independent of autonomic activation. J Appl Physiol (1985) 1999 Jul;87(1):97–103. doi: 10.1152/jappl.1999.87.1.97. [DOI] [PubMed] [Google Scholar]
  84. Hogan N., Kardos A., Paterson D. J., Casadei B. Effect of exogenous nitric oxide on baroreflex function in humans. Am J Physiol. 1999 Jul;277(1 Pt 2):H221–H227. doi: 10.1152/ajpheart.1999.277.1.H221. [DOI] [PubMed] [Google Scholar]
  85. Hu H., Chiamvimonvat N., Yamagishi T., Marban E. Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circ Res. 1997 Nov;81(5):742–752. doi: 10.1161/01.res.81.5.742. [DOI] [PubMed] [Google Scholar]
  86. Huang P. L., Dawson T. M., Bredt D. S., Snyder S. H., Fishman M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993 Dec 31;75(7):1273–1286. doi: 10.1016/0092-8674(93)90615-w. [DOI] [PubMed] [Google Scholar]
  87. Huang P. L., Huang Z., Mashimo H., Bloch K. D., Moskowitz M. A., Bevan J. A., Fishman M. C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995 Sep 21;377(6546):239–242. doi: 10.1038/377239a0. [DOI] [PubMed] [Google Scholar]
  88. Hui J., Tabatabaei A., MacLeod K. M. L-NMMA blocks carbachol-induced increases in cGMP levels but not decreases in tension in the presence of forskolin in rabbit papillary muscles. Cardiovasc Res. 1995 Sep;30(3):372–376. [PubMed] [Google Scholar]
  89. Imai Y., Jiang B., Pappano A. J. Mechanism for muscarinic inhibition of I(Ca(L)) is determined by the path for elevating cyclic AMP in cardiac myocytes. Cardiovasc Res. 2001 Aug 1;51(2):331–343. doi: 10.1016/s0008-6363(01)00304-2. [DOI] [PubMed] [Google Scholar]
  90. Jaffrey S. R., Snyder S. H. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science. 1996 Nov 1;274(5288):774–777. doi: 10.1126/science.274.5288.774. [DOI] [PubMed] [Google Scholar]
  91. Jimbo M., Suzuki H., Ichikawa M., Kumagai K., Nishizawa M., Saruta T. Role of nitric oxide in regulation of baroreceptor reflex. J Auton Nerv Syst. 1994 Dec 15;50(2):209–219. doi: 10.1016/0165-1838(94)90011-6. [DOI] [PubMed] [Google Scholar]
  92. Jones S. P., Girod W. G., Huang P. L., Lefer D. J. Myocardial reperfusion injury in neuronal nitric oxide synthase deficient mice. Coron Artery Dis. 2000 Dec;11(8):593–597. doi: 10.1097/00019501-200012000-00004. [DOI] [PubMed] [Google Scholar]
  93. Jones S. P., Girod W. G., Palazzo A. J., Granger D. N., Grisham M. B., Jourd'Heuil D., Huang P. L., Lefer D. J. Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Physiol. 1999 May;276(5 Pt 2):H1567–H1573. doi: 10.1152/ajpheart.1999.276.5.H1567. [DOI] [PubMed] [Google Scholar]
  94. Jumrussirikul P., Dinerman J., Dawson T. M., Dawson V. L., Ekelund U., Georgakopoulos D., Schramm L. P., Calkins H., Snyder S. H., Hare J. M. Interaction between neuronal nitric oxide synthase and inhibitory G protein activity in heart rate regulation in conscious mice. J Clin Invest. 1998 Oct 1;102(7):1279–1285. doi: 10.1172/JCI2843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Kanai A. J., Mesaros S., Finkel M. S., Oddis C. V., Birder L. A., Malinski T. Beta-adrenergic regulation of constitutive nitric oxide synthase in cardiac myocytes. Am J Physiol. 1997 Oct;273(4 Pt 1):C1371–C1377. doi: 10.1152/ajpcell.1997.273.4.C1371. [DOI] [PubMed] [Google Scholar]
  96. Kass D. A., Hare J. M., Georgakopoulos D. Murine cardiac function: a cautionary tail. Circ Res. 1998 Mar 9;82(4):519–522. doi: 10.1161/01.res.82.4.519. [DOI] [PubMed] [Google Scholar]
  97. Kaye D. M., Wiviott S. D., Balligand J. L., Simmons W. W., Smith T. W., Kelly R. A. Frequency-dependent activation of a constitutive nitric oxide synthase and regulation of contractile function in adult rat ventricular myocytes. Circ Res. 1996 Feb;78(2):217–224. doi: 10.1161/01.res.78.2.217. [DOI] [PubMed] [Google Scholar]
  98. Kaye D. M., Wiviott S. D., Kelly R. A. Activation of nitric oxide synthase (NOS3) by mechanical activity alters contractile activity in a Ca2+-independent manner in cardiac myocytes: role of troponin I phosphorylation. Biochem Biophys Res Commun. 1999 Mar 16;256(2):398–403. doi: 10.1006/bbrc.1999.0346. [DOI] [PubMed] [Google Scholar]
  99. Kaye D. M., Wiviott S. D., Kobzik L., Kelly R. A., Smith T. W. S-nitrosothiols inhibit neuronal norepinephrine transport. Am J Physiol. 1997 Feb;272(2 Pt 2):H875–H883. doi: 10.1152/ajpheart.1997.272.2.H875. [DOI] [PubMed] [Google Scholar]
  100. Keaney J. F., Jr, Hare J. M., Balligand J. L., Loscalzo J., Smith T. W., Colucci W. S. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Physiol. 1996 Dec;271(6 Pt 2):H2646–H2652. doi: 10.1152/ajpheart.1996.271.6.H2646. [DOI] [PubMed] [Google Scholar]
  101. Kelly R. P., Gibbs H. H., O'Rourke M. F., Daley J. E., Mang K., Morgan J. J., Avolio A. P. Nitroglycerin has more favourable effects on left ventricular afterload than apparent from measurement of pressure in a peripheral artery. Eur Heart J. 1990 Feb;11(2):138–144. doi: 10.1093/oxfordjournals.eurheartj.a059669. [DOI] [PubMed] [Google Scholar]
  102. Khadour F. H., Kao R. H., Park S., Armstrong P. W., Holycross B. J., Schulz R. Age-dependent augmentation of cardiac endothelial NOS in a genetic rat model of heart failure. Am J Physiol. 1997 Sep;273(3 Pt 2):H1223–H1230. doi: 10.1152/ajpheart.1997.273.3.H1223. [DOI] [PubMed] [Google Scholar]
  103. Khan Shakil A., Skaf Michel W., Harrison Robert W., Lee Kwangho, Minhas Khalid M., Kumar Anil, Fradley Mike, Shoukas Artin A., Berkowitz Dan E., Hare Joshua M. Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases. Circ Res. 2003 May 22;92(12):1322–1329. doi: 10.1161/01.RES.0000078171.52542.9E. [DOI] [PubMed] [Google Scholar]
  104. Kilter H., Lenz O., La Rosée K., Flesch M., Schwinger R. H., Mädge M., Kuhn-Regnier F., Böhm M. Evidence against a role of nitric oxide in the indirect negative inotropic-effect of M-cholinoceptor stimulation in human ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol. 1995 Sep;352(3):308–312. doi: 10.1007/BF00168562. [DOI] [PubMed] [Google Scholar]
  105. Kim W. K., Choi Y. B., Rayudu P. V., Das P., Asaad W., Arnelle D. R., Stamler J. S., Lipton S. A. Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO-. Neuron. 1999 Oct;24(2):461–469. doi: 10.1016/s0896-6273(00)80859-4. [DOI] [PubMed] [Google Scholar]
  106. Kirstein M., Rivet-Bastide M., Hatem S., Bénardeau A., Mercadier J. J., Fischmeister R. Nitric oxide regulates the calcium current in isolated human atrial myocytes. J Clin Invest. 1995 Feb;95(2):794–802. doi: 10.1172/JCI117729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Klabunde R. E., Kimber N. D., Kuk J. E., Helgren M. C., Förstermann U. NG-methyl-L-arginine decreases contractility, cGMP and cAMP in isoproterenol-stimulated rat hearts in vitro. Eur J Pharmacol. 1992 Nov 13;223(1):1–7. doi: 10.1016/0014-2999(92)90810-q. [DOI] [PubMed] [Google Scholar]
  108. Klimaschewski L., Kummer W., Mayer B., Couraud J. Y., Preissler U., Philippin B., Heym C. Nitric oxide synthase in cardiac nerve fibers and neurons of rat and guinea pig heart. Circ Res. 1992 Dec;71(6):1533–1537. doi: 10.1161/01.res.71.6.1533. [DOI] [PubMed] [Google Scholar]
  109. Kobayashi N., Higashi T., Hara K., Shirataki H., Matsuoka H. Effects of imidapril on NOS expression and myocardial remodelling in failing heart of Dahl salt-sensitive hypertensive rats. Cardiovasc Res. 1999 Dec;44(3):518–526. doi: 10.1016/s0008-6363(99)00237-0. [DOI] [PubMed] [Google Scholar]
  110. Kojda G., Harrison D. Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res. 1999 Aug 15;43(3):562–571. doi: 10.1016/s0008-6363(99)00169-8. [DOI] [PubMed] [Google Scholar]
  111. Kojda G., Kottenberg K., Noack E. Inhibition of nitric oxide synthase and soluble guanylate cyclase induces cardiodepressive effects in normal rat hearts. Eur J Pharmacol. 1997 Sep 10;334(2-3):181–190. doi: 10.1016/s0014-2999(97)01168-0. [DOI] [PubMed] [Google Scholar]
  112. Korner P. I., West M. J., Shaw J., Uther J. B. "Steady-state" properties of the baroreceptor-heart rate reflex in essential hypertension in man. Clin Exp Pharmacol Physiol. 1974 Jan-Feb;1(1):65–76. doi: 10.1111/j.1440-1681.1974.tb00528.x. [DOI] [PubMed] [Google Scholar]
  113. Kumar R., Namiki T., Joyner R. W. Effects of cGMP on L-type calcium current of adult and newborn rabbit ventricular cells. Cardiovasc Res. 1997 Mar;33(3):573–582. doi: 10.1016/s0008-6363(96)00258-1. [DOI] [PubMed] [Google Scholar]
  114. La Rovere M. T., Bigger J. T., Jr, Marcus F. I., Mortara A., Schwartz P. J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998 Feb 14;351(9101):478–484. doi: 10.1016/s0140-6736(97)11144-8. [DOI] [PubMed] [Google Scholar]
  115. Layland Joanne, Li Jian-Mei, Shah Ajay M. Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol. 2002 Apr 15;540(Pt 2):457–467. doi: 10.1113/jphysiol.2001.014126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Levi R. C., Alloatti G., Fischmeister R. Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflugers Arch. 1989 Apr;413(6):685–687. doi: 10.1007/BF00581823. [DOI] [PubMed] [Google Scholar]
  117. Lewis N. P., Tsao P. S., Rickenbacher P. R., Xue C., Johns R. A., Haywood G. A., von der Leyen H., Trindade P. T., Cooke J. P., Hunt S. A. Induction of nitric oxide synthase in the human cardiac allograft is associated with contractile dysfunction of the left ventricle. Circulation. 1996 Feb 15;93(4):720–729. doi: 10.1161/01.cir.93.4.720. [DOI] [PubMed] [Google Scholar]
  118. Li Y., Zhang W., Stern J. E. Nitric oxide inhibits the firing activity of hypothalamic paraventricular neurons that innervate the medulla oblongata: role of GABA. Neuroscience. 2003;118(3):585–601. doi: 10.1016/s0306-4522(03)00042-3. [DOI] [PubMed] [Google Scholar]
  119. Li Yi-Fan, Roy Shyamal K., Channon Keith M., Zucker Irving H., Patel Kaushik P. Effect of in vivo gene transfer of nNOS in the PVN on renal nerve discharge in rats. Am J Physiol Heart Circ Physiol. 2002 Feb;282(2):H594–H601. doi: 10.1152/ajpheart.00503.2001. [DOI] [PubMed] [Google Scholar]
  120. Lin C. S., Lau A., Bakircioglu E., Tu R., Wu F., Week S., Nunes L., Lue T. F. Analysis of neuronal nitric oxide synthase isoform expression and identification of human nNOS-mu. Biochem Biophys Res Commun. 1998 Dec 18;253(2):388–394. doi: 10.1006/bbrc.1998.9658. [DOI] [PubMed] [Google Scholar]
  121. Lin H. C., Wan F. J., Tseng C. J. Modulation of cardiovascular effects produced by nitric oxide and ionotropic glutamate receptor interaction in the nucleus tractus solitarii of rats. Neuropharmacology. 1999 Jul;38(7):935–941. doi: 10.1016/s0028-3908(99)00017-9. [DOI] [PubMed] [Google Scholar]
  122. Lin L. H., Cassell M. D., Sandra A., Talman W. T. Direct evidence for nitric oxide synthase in vagal afferents to the nucleus tractus solitarii. Neuroscience. 1998 May;84(2):549–558. doi: 10.1016/s0306-4522(97)00501-0. [DOI] [PubMed] [Google Scholar]
  123. Lin L. H., Emson P. C., Talman W. T. Apposition of neuronal elements containing nitric oxide synthase and glutamate in the nucleus tractus solitarii of rat: a confocal microscopic analysis. Neuroscience. 2000;96(2):341–350. doi: 10.1016/s0306-4522(99)00560-6. [DOI] [PubMed] [Google Scholar]
  124. Lin L. H., Sahai A. K., Rockland K. S., Talman W. T. The distribution of neuronal nitric oxide synthase in the nucleus tractus solitarii of the squirrel monkey. Brain Res. 2000 Feb 21;856(1-2):84–92. doi: 10.1016/s0006-8993(99)02411-7. [DOI] [PubMed] [Google Scholar]
  125. Liu J. L., Murakami H., Zucker I. H. Angiotensin II-nitric oxide interaction on sympathetic outflow in conscious rabbits. Circ Res. 1998 Mar 9;82(4):496–502. doi: 10.1161/01.res.82.4.496. [DOI] [PubMed] [Google Scholar]
  126. Liu J. L., Murakami H., Zucker I. H. Effects of NO on baroreflex control of heart rate and renal nerve activity in conscious rabbits. Am J Physiol. 1996 Jun;270(6 Pt 2):R1361–R1370. doi: 10.1152/ajpregu.1996.270.6.R1361. [DOI] [PubMed] [Google Scholar]
  127. Markos F., Snow H. M., Kidd C., Conlon K. Nitric oxide facilitates vagal control of heart rate via actions in the cardiac parasympathetic ganglia of the anaesthetised dog. Exp Physiol. 2002 Jan;87(1):49–52. doi: 10.1113/eph8702303. [DOI] [PubMed] [Google Scholar]
  128. Matsumura K., Abe I., Tsuchihashi T., Fujishima M. Central nitric oxide attenuates the baroreceptor reflex in conscious rabbits. Am J Physiol. 1998 Apr;274(4 Pt 2):R1142–R1149. doi: 10.1152/ajpregu.1998.274.4.R1142. [DOI] [PubMed] [Google Scholar]
  129. Michel T., Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest. 1997 Nov 1;100(9):2146–2152. doi: 10.1172/JCI119750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Miethke Alexander, Feussner Markus, Planitzer Gerit, Richter Heidrun, Gutsmann Martina, Gossrau Reinhart. Localization of NOS-1 in the sarcolemma region of a subpopulation of atrial cardiomyocytes including myoendocrine cells and NOS-3 in vascular and endocardial endothelial cells of the rat heart. Acta Histochem. 2003;105(1):43–55. doi: 10.1078/0065-1281-00692. [DOI] [PubMed] [Google Scholar]
  131. Minami N., Imai Y., Hashimoto J., Abe K. The role of nitric oxide in the baroreceptor-cardiac reflex in conscious Wistar rats. Am J Physiol. 1995 Sep;269(3 Pt 2):H851–H855. doi: 10.1152/ajpheart.1995.269.3.H851. [DOI] [PubMed] [Google Scholar]
  132. Mohan P., Sys S. U., Brutsaert D. L. Positive inotropic effect of nitric oxide in myocardium. Int J Cardiol. 1995 Jul;50(3):233–237. doi: 10.1016/0167-5273(95)02382-7. [DOI] [PubMed] [Google Scholar]
  133. Mohan R. M., Heaton D. A., Danson E. J. F., Krishnan S. P. R., Cai S., Channon K. M., Paterson D. J. Neuronal nitric oxide synthase gene transfer promotes cardiac vagal gain of function. Circ Res. 2002 Dec 13;91(12):1089–1091. doi: 10.1161/01.res.0000047531.75030.b5. [DOI] [PubMed] [Google Scholar]
  134. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  135. Mubagwa K., Shirayama T., Moreau M., Pappano A. J. Effects of PDE inhibitors and carbachol on the L-type Ca current in guinea pig ventricular myocytes. Am J Physiol. 1993 Oct;265(4 Pt 2):H1353–H1363. doi: 10.1152/ajpheart.1993.265.4.H1353. [DOI] [PubMed] [Google Scholar]
  136. Mungrue Imran N., Gros Robert, You Xiaomang, Pirani Asif, Azad Azar, Csont Tamas, Schulz Richard, Butany Jagdish, Stewart Duncan J., Husain Mansoor. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest. 2002 Mar;109(6):735–743. doi: 10.1172/JCI13265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Murakami H., Liu J. L., Yoneyama H., Nishida Y., Okada K., Kosaka H., Morita H., Zucker I. H. Blockade of neuronal nitric oxide synthase alters the baroreflex control of heart rate in the rabbit. Am J Physiol. 1998 Jan;274(1 Pt 2):R181–R186. doi: 10.1152/ajpregu.1998.274.1.R181. [DOI] [PubMed] [Google Scholar]
  138. Musialek P., Lei M., Brown H. F., Paterson D. J., Casadei B. Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). Circ Res. 1997 Jul;81(1):60–68. doi: 10.1161/01.res.81.1.60. [DOI] [PubMed] [Google Scholar]
  139. Musialek P., Paterson D. J., Casadei B. Changes in extracellular pH mediate the chronotropic responses to L-arginine. Cardiovasc Res. 1999 Aug 15;43(3):712–720. doi: 10.1016/s0008-6363(99)00083-8. [DOI] [PubMed] [Google Scholar]
  140. Méry P. F., Hove-Madsen L., Chesnais J. M., Hartzell H. C., Fischmeister R. Nitric oxide synthase does not participate in negative inotropic effect of acetylcholine in frog heart. Am J Physiol. 1996 Apr;270(4 Pt 2):H1178–H1188. doi: 10.1152/ajpheart.1996.270.4.H1178. [DOI] [PubMed] [Google Scholar]
  141. Méry P. F., Lohmann S. M., Walter U., Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1197–1201. doi: 10.1073/pnas.88.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Müller-Strahl G., Kottenberg K., Zimmer H. G., Noack E., Kojda G. Inhibition of nitric oxide synthase augments the positive inotropic effect of nitric oxide donors in the rat heart. J Physiol. 2000 Jan 15;522(Pt 2):311–320. doi: 10.1111/j.1469-7793.2000.00311.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Nishida C. R., Ortiz de Montellano P. R. Electron transfer and catalytic activity of nitric oxide synthases. Chimeric constructs of the neuronal, inducible, and endothelial isoforms. J Biol Chem. 1998 Mar 6;273(10):5566–5571. doi: 10.1074/jbc.273.10.5566. [DOI] [PubMed] [Google Scholar]
  144. Nolan J., Batin P. D., Andrews R., Lindsay S. J., Brooksby P., Mullen M., Baig W., Flapan A. D., Cowley A., Prescott R. J. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998 Oct 13;98(15):1510–1516. doi: 10.1161/01.cir.98.15.1510. [DOI] [PubMed] [Google Scholar]
  145. Ono K., Trautwein W. Potentiation by cyclic GMP of beta-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J Physiol. 1991 Nov;443:387–404. doi: 10.1113/jphysiol.1991.sp018839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Pabla R., Curtis M. J. Effects of NO modulation on cardiac arrhythmias in the rat isolated heart. Circ Res. 1995 Nov;77(5):984–992. doi: 10.1161/01.res.77.5.984. [DOI] [PubMed] [Google Scholar]
  147. Patel K. P., Zhang K., Zucker I. H., Krukoff T. L. Decreased gene expression of neuronal nitric oxide synthase in hypothalamus and brainstem of rats in heart failure. Brain Res. 1996 Sep 23;734(1-2):109–115. [PubMed] [Google Scholar]
  148. Patel V. C., Yellon D. M., Singh K. J., Neild G. H., Woolfson R. G. Inhibition of nitric oxide limits infarct size in the in situ rabbit heart. Biochem Biophys Res Commun. 1993 Jul 15;194(1):234–238. doi: 10.1006/bbrc.1993.1809. [DOI] [PubMed] [Google Scholar]
  149. Paton J. F., Deuchars J., Ahmad Z., Wong L. F., Murphy D., Kasparov S. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol. 2001 Mar 1;531(Pt 2):445–458. doi: 10.1111/j.1469-7793.2001.0445i.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Paulus W. J., Vantrimpont P. J., Shah A. M. Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. Circulation. 1994 May;89(5):2070–2078. doi: 10.1161/01.cir.89.5.2070. [DOI] [PubMed] [Google Scholar]
  151. Petroff M. G., Kim S. H., Pepe S., Dessy C., Marbán E., Balligand J. L., Sollott S. J. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol. 2001 Oct;3(10):867–873. doi: 10.1038/ncb1001-867. [DOI] [PubMed] [Google Scholar]
  152. Piech Alina, Dessy Chantal, Havaux Xavier, Feron Olivier, Balligand Jean-Luc. Differential regulation of nitric oxide synthases and their allosteric regulators in heart and vessels of hypertensive rats. Cardiovasc Res. 2003 Feb;57(2):456–467. doi: 10.1016/s0008-6363(02)00676-4. [DOI] [PubMed] [Google Scholar]
  153. Pinsky D. J., Patton S., Mesaros S., Brovkovych V., Kubaszewski E., Grunfeld S., Malinski T. Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res. 1997 Sep;81(3):372–379. doi: 10.1161/01.res.81.3.372. [DOI] [PubMed] [Google Scholar]
  154. Planitzer Gerit, Richter Heidrun, Gossrau Reinhart. The nitric oxide synthase-1 and nitric oxide synthase-3/nitric oxide signalling systems in the heart of wild type mice and mouse mutants. Histochem J. 2002 Jun-Jul;34(6-7):345–355. doi: 10.1023/a:1023390811358. [DOI] [PubMed] [Google Scholar]
  155. Plochocka-Zulinska D., Krukoff T. L. Increased gene expression of neuronal nitric oxide synthase in brain of adult spontaneously hypertensive rats. Brain Res Mol Brain Res. 1997 Sep;48(2):291–297. doi: 10.1016/s0169-328x(97)00101-0. [DOI] [PubMed] [Google Scholar]
  156. Pontieri V., Venezuela M. K., Scavone C., Michelini L. C. Role of endogenous nitric oxide in the nucleus tratus solitarii on baroreflex control of heart rate in spontaneously hypertensive rats. J Hypertens. 1998 Dec;16(12 Pt 2):1993–1999. doi: 10.1097/00004872-199816121-00021. [DOI] [PubMed] [Google Scholar]
  157. Prendergast B. D., Sagach V. F., Shah A. M. Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation. 1997 Aug 19;96(4):1320–1329. doi: 10.1161/01.cir.96.4.1320. [DOI] [PubMed] [Google Scholar]
  158. Ramchandra Rohit, Barrett Carolyn J., Malpas Simon C. Chronic blockade of nitric oxide does not produce hypertension in baroreceptor denervated rabbits. Hypertension. 2003 Sep 22;42(5):974–977. doi: 10.1161/01.HYP.0000094556.83257.8C. [DOI] [PubMed] [Google Scholar]
  159. Ruggeri P., Battaglia A., Ermirio R., Grossini E., Molinari C., Mary D. A., Vacca G. Role of nitric oxide in the control of the heart rate within the nucleus ambiguus of rats. Neuroreport. 2000 Feb 28;11(3):481–485. doi: 10.1097/00001756-200002280-00011. [DOI] [PubMed] [Google Scholar]
  160. Ruggiero D. A., Mtui E. P., Otake K., Anwar M. Central and primary visceral afferents to nucleus tractus solitarii may generate nitric oxide as a membrane-permeant neuronal messenger. J Comp Neurol. 1996 Jan 1;364(1):51–67. doi: 10.1002/(SICI)1096-9861(19960101)364:1<51::AID-CNE5>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  161. Sakai K., Hirooka Y., Matsuo I., Eshima K., Shigematsu H., Shimokawa H., Takeshita A. Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension. 2000 Dec;36(6):1023–1028. doi: 10.1161/01.hyp.36.6.1023. [DOI] [PubMed] [Google Scholar]
  162. Sasaki M., Gonzalez-Zulueta M., Huang H., Herring W. J., Ahn S., Ginty D. D., Dawson V. L., Dawson T. M. Dynamic regulation of neuronal NO synthase transcription by calcium influx through a CREB family transcription factor-dependent mechanism. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8617–8622. doi: 10.1073/pnas.97.15.8617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Schmidt H. H., Pollock J. S., Nakane M., Gorsky L. D., Förstermann U., Murad F. Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):365–369. doi: 10.1073/pnas.88.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Schulz R., Wambolt R. Inhibition of nitric oxide synthesis protects the isolated working rabbit heart from ischaemia-reperfusion injury. Cardiovasc Res. 1995 Sep;30(3):432–439. [PubMed] [Google Scholar]
  165. Schwarz P., Diem R., Dun N. J., Förstermann U. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circ Res. 1995 Oct;77(4):841–848. doi: 10.1161/01.res.77.4.841. [DOI] [PubMed] [Google Scholar]
  166. Scrogin K. E., Hatton D. C., Chi Y., Luft F. C. Chronic nitric oxide inhibition with L-NAME: effects on autonomic control of the cardiovascular system. Am J Physiol. 1998 Feb;274(2 Pt 2):R367–R374. doi: 10.1152/ajpregu.1998.274.2.R367. [DOI] [PubMed] [Google Scholar]
  167. Sears C. E., Choate J. K., Paterson D. J. Effect of nitric oxide synthase inhibition on the sympatho-vagal contol of heart rate. J Auton Nerv Syst. 1998 Aug 27;73(1):63–73. doi: 10.1016/s0165-1838(98)00123-4. [DOI] [PubMed] [Google Scholar]
  168. Sears C. E., Choate J. K., Paterson D. J. Inhibition of nitric oxide synthase slows heart rate recovery from cholinergic activation. J Appl Physiol (1985) 1998 May;84(5):1596–1603. doi: 10.1152/jappl.1998.84.5.1596. [DOI] [PubMed] [Google Scholar]
  169. Sears C. E., Choate J. K., Paterson D. J. NO-cGMP pathway accentuates the decrease in heart rate caused by cardiac vagal nerve stimulation. J Appl Physiol (1985) 1999 Feb;86(2):510–516. doi: 10.1152/jappl.1999.86.2.510. [DOI] [PubMed] [Google Scholar]
  170. Sears Claire E., Bryant Simon M., Ashley Euan A., Lygate Craig A., Rakovic Stevan, Wallis Helen L., Neubauer Stefan, Terrar Derek A., Casadei B. Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res. 2003 Mar 6;92(5):e52–e59. doi: 10.1161/01.RES.0000064585.95749.6D. [DOI] [PubMed] [Google Scholar]
  171. Sener A., Smith F. G. Nitric oxide modulates arterial baroreflex control of heart rate in conscious lambs in an age-dependent manner. Am J Physiol Heart Circ Physiol. 2001 May;280(5):H2255–H2263. doi: 10.1152/ajpheart.2001.280.5.H2255. [DOI] [PubMed] [Google Scholar]
  172. Shah A. M., MacCarthy P. A. Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther. 2000 Apr;86(1):49–86. doi: 10.1016/s0163-7258(99)00072-8. [DOI] [PubMed] [Google Scholar]
  173. Shah A. M. Paracrine modulation of heart cell function by endothelial cells. Cardiovasc Res. 1996 Jun;31(6):847–867. [PubMed] [Google Scholar]
  174. Shah A. M., Spurgeon H. A., Sollott S. J., Talo A., Lakatta E. G. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res. 1994 May;74(5):970–978. doi: 10.1161/01.res.74.5.970. [DOI] [PubMed] [Google Scholar]
  175. Smyth H. S., Sleight P., Pickering G. W. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res. 1969 Jan;24(1):109–121. doi: 10.1161/01.res.24.1.109. [DOI] [PubMed] [Google Scholar]
  176. Song X., Vaage J., Valen G. The role of neuronal nitric oxide synthase in ischaemia-reperfusion injury of the isolated mouse heart. Acta Physiol Scand. 2001 Aug;172(4):291–295. doi: 10.1046/j.1365-201x.2001.00877.x. [DOI] [PubMed] [Google Scholar]
  177. Song Y., Zweier J. L., Xia Y. Heat-shock protein 90 augments neuronal nitric oxide synthase activity by enhancing Ca2+/calmodulin binding. Biochem J. 2001 Apr 15;355(Pt 2):357–360. doi: 10.1042/0264-6021:3550357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Sosunov A. A., Hassall C. J., Loesch A., Turmaine M., Burnstock G. Nitric oxide synthase-containing neurones and nerve fibres within cardiac ganglia of rat and guinea-pig: an electron-microscopic immunocytochemical study. Cell Tissue Res. 1996 Apr;284(1):19–28. doi: 10.1007/s004410050563. [DOI] [PubMed] [Google Scholar]
  179. Spieker L. E., Corti R., Binggeli C., Lüscher T. F., Noll G. Baroreceptor dysfunction induced by nitric oxide synthase inhibition in humans. J Am Coll Cardiol. 2000 Jul;36(1):213–218. doi: 10.1016/s0735-1097(00)00674-4. [DOI] [PubMed] [Google Scholar]
  180. Stein B., Drögemüller A., Mülsch A., Schmitz W., Scholz H. Ca(++)-dependent constitutive nitric oxide synthase is not involved in the cyclic GMP-increasing effects of carbachol in ventricular cardiomyocytes. J Pharmacol Exp Ther. 1993 Aug;266(2):919–925. [PubMed] [Google Scholar]
  181. Sterin-Borda L., Echagüe A. V., Leiros C. P., Genaro A., Borda E. Endogenous nitric oxide signalling system and the cardiac muscarinic acetylcholine receptor-inotropic response. Br J Pharmacol. 1995 Aug;115(8):1525–1531. doi: 10.1111/j.1476-5381.1995.tb16646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Sterin-Borda L., Genaro A., Perez Leiros C., Cremaschi G., Vila Echagüe A., Borda E. Role of nitric oxide in cardiac beta-adrenoceptor-inotropic response. Cell Signal. 1998 Apr;10(4):253–257. doi: 10.1016/s0898-6568(97)00125-3. [DOI] [PubMed] [Google Scholar]
  183. Stojanovic M. O., Ziolo M. T., Wahler G. M., Wolska B. M. Anti-adrenergic effects of nitric oxide donor SIN-1 in rat cardiac myocytes. Am J Physiol Cell Physiol. 2001 Jul;281(1):C342–C349. doi: 10.1152/ajpcell.2001.281.1.C342. [DOI] [PubMed] [Google Scholar]
  184. Stoyanovsky D., Murphy T., Anno P. R., Kim Y. M., Salama G. Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium. 1997 Jan;21(1):19–29. doi: 10.1016/s0143-4160(97)90093-2. [DOI] [PubMed] [Google Scholar]
  185. Sumii K., Sperelakis N. cGMP-dependent protein kinase regulation of the L-type Ca2+ current in rat ventricular myocytes. Circ Res. 1995 Oct;77(4):803–812. doi: 10.1161/01.res.77.4.803. [DOI] [PubMed] [Google Scholar]
  186. Takimoto Y., Aoyama T., Keyamura R., Shinoda E., Hattori R., Yui Y., Sasayama S. Differential expression of three types of nitric oxide synthase in both infarcted and non-infarcted left ventricles after myocardial infarction in the rat. Int J Cardiol. 2000 Nov-Dec;76(2-3):135–145. doi: 10.1016/s0167-5273(00)00394-6. [DOI] [PubMed] [Google Scholar]
  187. Takimoto Yoshihito, Aoyama Takeshi, Tanaka Koichi, Keyamura Reiko, Yui Yoshiki, Sasayama Shigetake. Augmented expression of neuronal nitric oxide synthase in the atria parasympathetically decreases heart rate during acute myocardial infarction in rats. Circulation. 2002 Jan 29;105(4):490–496. doi: 10.1161/hc0402.102662. [DOI] [PubMed] [Google Scholar]
  188. Tambascia R. C., Fonseca P. M., Corat P. D., Moreno H., Jr, Saad M. J., Franchini K. G. Expression and distribution of NOS1 and NOS3 in the myocardium of angiotensin II-infused rats. Hypertension. 2001 Jun;37(6):1423–1428. doi: 10.1161/01.hyp.37.6.1423. [DOI] [PubMed] [Google Scholar]
  189. Travagli R. A., Gillis R. A. Nitric oxide-mediated excitatory effect on neurons of dorsal motor nucleus of vagus. Am J Physiol. 1994 Jan;266(1 Pt 1):G154–G160. doi: 10.1152/ajpgi.1994.266.1.G154. [DOI] [PubMed] [Google Scholar]
  190. Tseng C. J., Liu H. Y., Lin H. C., Ger L. P., Tung C. S., Yen M. H. Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension. 1996 Jan;27(1):36–42. doi: 10.1161/01.hyp.27.1.36. [DOI] [PubMed] [Google Scholar]
  191. Ungureanu-Longrois D., Bézie Y., Perret C., Laurent S. Effects of exogenous and endogenous nitric oxide on the contractile function of cultured chick embryo ventricular myocytes. J Mol Cell Cardiol. 1997 Feb;29(2):677–687. doi: 10.1006/jmcc.1996.0310. [DOI] [PubMed] [Google Scholar]
  192. Vallance Patrick, Leiper James. Blocking NO synthesis: how, where and why? Nat Rev Drug Discov. 2002 Dec;1(12):939–950. doi: 10.1038/nrd960. [DOI] [PubMed] [Google Scholar]
  193. Vandecasteele G., Eschenhagen T., Fischmeister R. Role of the NO-cGMP pathway in the muscarinic regulation of the L-type Ca2+ current in human atrial myocytes. J Physiol. 1998 Feb 1;506(Pt 3):653–663. doi: 10.1111/j.1469-7793.1998.653bv.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Vandecasteele G., Eschenhagen T., Scholz H., Stein B., Verde I., Fischmeister R. Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med. 1999 Mar;5(3):331–334. doi: 10.1038/6553. [DOI] [PubMed] [Google Scholar]
  195. Vanoli E., De Ferrari G. M., Stramba-Badiale M., Hull S. S., Jr, Foreman R. D., Schwartz P. J. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991 May;68(5):1471–1481. doi: 10.1161/01.res.68.5.1471. [DOI] [PubMed] [Google Scholar]
  196. Varghese P., Harrison R. W., Lofthouse R. A., Georgakopoulos D., Berkowitz D. E., Hare J. M. beta(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest. 2000 Sep;106(5):697–703. doi: 10.1172/JCI9323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Vila-Petroff M. G., Younes A., Egan J., Lakatta E. G., Sollott S. J. Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res. 1999 May 14;84(9):1020–1031. doi: 10.1161/01.res.84.9.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Vitagliano S., Berrino L., D'Amico M., Maione S., De Novellis V., Rossi F. Involvement of nitric oxide in cardiorespiratory regulation in the nucleus tractus solitarii. Neuropharmacology. 1996 May;35(5):625–631. doi: 10.1016/0028-3908(96)84633-8. [DOI] [PubMed] [Google Scholar]
  199. Wahler G. M., Dollinger S. J. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol. 1995 Jan;268(1 Pt 1):C45–C54. doi: 10.1152/ajpcell.1995.268.1.C45. [DOI] [PubMed] [Google Scholar]
  200. Waki Hidefumi, Kasparov Sergey, Wong Liang-Fong, Murphy David, Shimizu Tsuyoshi, Paton Julian F. R. Chronic inhibition of endothelial nitric oxide synthase activity in nucleus tractus solitarii enhances baroreceptor reflex in conscious rats. J Physiol. 2003 Jan 1;546(Pt 1):233–242. doi: 10.1113/jphysiol.2002.030270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Wang Yu, Patel Kaushik P., Cornish Kurtis G., Channon Keith M., Zucker Irving H. nNOS gene transfer to RVLM improves baroreflex function in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1660–H1667. doi: 10.1152/ajpheart.00239.2003. [DOI] [PubMed] [Google Scholar]
  202. Wegener Jörg W., Nawrath Hermann, Wolfsgruber Wiebke, Kühbandner Susanne, Werner Claudia, Hofmann Franz, Feil Robert. cGMP-dependent protein kinase I mediates the negative inotropic effect of cGMP in the murine myocardium. Circ Res. 2002 Jan 11;90(1):18–20. doi: 10.1161/hh0102.103222. [DOI] [PubMed] [Google Scholar]
  203. Wilkinson Ian B., MacCallum Helen, Cockcroft John R., Webb David J. Inhibition of basal nitric oxide synthesis increases aortic augmentation index and pulse wave velocity in vivo. Br J Clin Pharmacol. 2002 Feb;53(2):189–192. doi: 10.1046/j.1365-2125.2002.1528adoc.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Wong Liang-Fong, Polson Jaimne W., Murphy David, Paton Julian F. R., Kasparov Sergey. Genetic and pharmacological dissection of pathways involved in the angiotensin II-mediated depression of baroreflex function. FASEB J. 2002 Oct;16(12):1595–1601. doi: 10.1096/fj.02-0099com. [DOI] [PubMed] [Google Scholar]
  205. Wunderlich Carsten, Flögel Ulrich, Gödecke Axel, Heger Jacqueline, Schrader Jürgen. Acute inhibition of myoglobin impairs contractility and energy state of iNOS-overexpressing hearts. Circ Res. 2003 May 29;92(12):1352–1358. doi: 10.1161/01.RES.0000079026.70629.E5. [DOI] [PubMed] [Google Scholar]
  206. Wyeth R. P., Temma K., Seifen E., Kennedy R. H. Negative inotropic actions of nitric oxide require high doses in rat cardiac muscle. Pflugers Arch. 1996 Aug;432(4):678–684. doi: 10.1007/s004240050185. [DOI] [PubMed] [Google Scholar]
  207. Xu K. Y., Huso D. L., Dawson T. M., Bredt D. S., Becker L. C. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):657–662. doi: 10.1073/pnas.96.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Xu L., Eu J. P., Meissner G., Stamler J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 1998 Jan 9;279(5348):234–237. doi: 10.1126/science.279.5348.234. [DOI] [PubMed] [Google Scholar]
  209. Yang X. P., Liu Y. H., Shesely E. G., Bulagannawar M., Liu F., Carretero O. A. Endothelial nitric oxide gene knockout mice: cardiac phenotypes and the effect of angiotensin-converting enzyme inhibitor on myocardial ischemia/reperfusion injury. Hypertension. 1999 Jul;34(1):24–30. doi: 10.1161/01.hyp.34.1.24. [DOI] [PubMed] [Google Scholar]
  210. Yoo S., Lee S. H., Choi B. H., Yeom J. B., Ho W. K., Earm Y. E. Dual effect of nitric oxide on the hyperpolarization-activated inward current (I(f)) in sino-atrial node cells of the rabbit. J Mol Cell Cardiol. 1998 Dec;30(12):2729–2738. doi: 10.1006/jmcc.1998.0845. [DOI] [PubMed] [Google Scholar]
  211. Yu Jianqiang, Yu Long, Chen Zheng, Zheng Lihua, Chen Xiaosong, Wang Xiang, Ren Daming, Zhao Shouyuan. Protein inhibitor of neuronal nitric oxide synthase interacts with protein kinase A inhibitors. Brain Res Mol Brain Res. 2002 Mar 28;99(2):145–149. doi: 10.1016/s0169-328x(02)00104-3. [DOI] [PubMed] [Google Scholar]
  212. Zahradníková A., Minarovic I., Venema R. C., Mészáros L. G. Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide. Cell Calcium. 1997 Dec;22(6):447–454. doi: 10.1016/s0143-4160(97)90072-5. [DOI] [PubMed] [Google Scholar]
  213. Zanzinger J., Czachurski J., Seller H. Effects of nitric oxide on sympathetic baroreflex transmission in the nucleus tractus solitarii and caudal ventrolateral medulla in cats. Neurosci Lett. 1995 Sep 15;197(3):199–202. doi: 10.1016/0304-3940(95)11929-q. [DOI] [PubMed] [Google Scholar]
  214. Zanzinger J., Czachurski J., Seller H. Inhibition of basal and reflex-mediated sympathetic activity in the RVLM by nitric oxide. Am J Physiol. 1995 Apr;268(4 Pt 2):R958–R962. doi: 10.1152/ajpregu.1995.268.4.R958. [DOI] [PubMed] [Google Scholar]
  215. Zanzinger J., Czachurski J., Seller H. Neuronal nitric oxide reduces sympathetic excitability by modulation of central glutamate effects in pigs. Circ Res. 1997 Apr;80(4):565–571. doi: 10.1161/01.res.80.4.565. [DOI] [PubMed] [Google Scholar]
  216. Zhang K., Patel K. P. Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA. Am J Physiol. 1998 Sep;275(3 Pt 2):R728–R734. doi: 10.1152/ajpregu.1998.275.3.R728. [DOI] [PubMed] [Google Scholar]
  217. Zhang K., Zucker I. H., Patel K. P. Altered number of diaphorase (NOS) positive neurons in the hypothalamus of rats with heart failure. Brain Res. 1998 Mar 9;786(1-2):219–225. doi: 10.1016/s0006-8993(97)01449-2. [DOI] [PubMed] [Google Scholar]
  218. Zhou Lan, Burnett Arthur L., Huang Paul L., Becker Lewis C., Kuppusamy Periannan, Kass David A., Kevin Donahue J., Proud David, Sham James S. K., Dawson Ted M. Lack of nitric oxide synthase depresses ion transporting enzyme function in cardiac muscle. Biochem Biophys Res Commun. 2002 Jun 28;294(5):1030–1035. doi: 10.1016/S0006-291X(02)00599-5. [DOI] [PubMed] [Google Scholar]
  219. Ziolo M. T., Katoh H., Bers D. M. Positive and negative effects of nitric oxide on Ca(2+) sparks: influence of beta-adrenergic stimulation. Am J Physiol Heart Circ Physiol. 2001 Dec;281(6):H2295–H2303. doi: 10.1152/ajpheart.2001.281.6.H2295. [DOI] [PubMed] [Google Scholar]
  220. de Lorgeril M., Salen P., Defaye P., Mabo P., Paillard F. Dietary prevention of sudden cardiac death. Eur Heart J. 2002 Feb;23(4):277–285. doi: 10.1053/euhj.2001.2656. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES