Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Jun 29;359(1446):997–1008. doi: 10.1098/rstb.2003.1398

Recent developments in solid-state magic-angle spinning, nuclear magnetic resonance of fully and significantly isotopically labelled peptides and proteins.

Suzana K Straus 1
PMCID: PMC1693383  PMID: 15306412

Abstract

In recent years, a large number of solid-state nuclear magnetic resonance (NMR) techniques have been developed and applied to the study of fully or significantly isotopically labelled ((13)C, (15)N or (13)C/(15)N) biomolecules. In the past few years, the first structures of (13)C/(15)N-labelled peptides, Gly-Ile and Met-Leu-Phe, and a protein, Src-homology 3 domain, were solved using magic-angle spinning NMR, without recourse to any structural information obtained from other methods. This progress has been made possible by the development of NMR experiments to assign solid-state spectra and experiments to extract distance and orientational information. Another key aspect to the success of solid-state NMR is the advances made in sample preparation. These improvements will be reviewed in this contribution. Future prospects for the application of solid-state NMR to interesting biological questions will also briefly be discussed.

Full Text

The Full Text of this article is available as a PDF (485.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand Kanchan, Pal Debnath, Hilgenfeld Rolf. An overview on 2-methyl-2,4-pentanediol in crystallization and in crystals of biological macromolecules. Acta Crystallogr D Biol Crystallogr. 2002 Sep 26;58(Pt 10 1):1722–1728. doi: 10.1107/S0907444902014610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arakawa T., Bhat R., Timasheff S. N. Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry. 1990 Feb 20;29(7):1924–1931. doi: 10.1021/bi00459a037. [DOI] [PubMed] [Google Scholar]
  3. Astrof N. S., Lyon C. E., Griffin R. G. Triple resonance solid state NMR experiments with reduced dimensionality evolution periods. J Magn Reson. 2001 Oct;152(2):303–307. doi: 10.1006/jmre.2001.2406. [DOI] [PubMed] [Google Scholar]
  4. Astrof Nathan S., Griffin Robert G. Soft-triple resonance solid-state NMR experiments for assignments of U-13C, 15N labeled peptides and proteins. J Magn Reson. 2002 Sep-Oct;158(1-2):157–163. doi: 10.1016/s1090-7807(02)00025-3. [DOI] [PubMed] [Google Scholar]
  5. Brender J. R., Taylor D. M., Ramamoorthy A. Orientation of amide-nitrogen-15 chemical shift tensors in peptides: a quantum chemical study. J Am Chem Soc. 2001 Feb 7;123(5):914–922. doi: 10.1021/ja001980q. [DOI] [PubMed] [Google Scholar]
  6. Burley S. K. An overview of structural genomics. Nat Struct Biol. 2000 Nov;7 (Suppl):932–934. doi: 10.1038/80697. [DOI] [PubMed] [Google Scholar]
  7. Case D. A. Interpretation of chemical shifts and coupling constants in macromolecules. Curr Opin Struct Biol. 2000 Apr;10(2):197–203. doi: 10.1016/s0959-440x(00)00068-3. [DOI] [PubMed] [Google Scholar]
  8. Castellani Federica, van Rossum Barth, Diehl Annette, Schubert Mario, Rehbein Kristina, Oschkinat Hartmut. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature. 2002 Nov 7;420(6911):98–102. doi: 10.1038/nature01070. [DOI] [PubMed] [Google Scholar]
  9. Cornilescu G., Delaglio F., Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR. 1999 Mar;13(3):289–302. doi: 10.1023/a:1008392405740. [DOI] [PubMed] [Google Scholar]
  10. Cowburn D., Muir T. W. Segmental isotopic labeling using expressed protein ligation. Methods Enzymol. 2001;339:41–54. doi: 10.1016/s0076-6879(01)39308-4. [DOI] [PubMed] [Google Scholar]
  11. Detken A., Hardy E. H., Ernst M., Kainosho M., Kawakami T., Aimoto S., Meier B. H. Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: quantification and application to antamanide. J Biomol NMR. 2001 Jul;20(3):203–221. doi: 10.1023/a:1011212100630. [DOI] [PubMed] [Google Scholar]
  12. Gardner K. H., Kay L. E. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct. 1998;27:357–406. doi: 10.1146/annurev.biophys.27.1.357. [DOI] [PubMed] [Google Scholar]
  13. Geahigan K. B., Meints G. A., Hatcher M. E., Orban J., Drobny G. P. The dynamic impact of CpG methylation in DNA. Biochemistry. 2000 Apr 25;39(16):4939–4946. doi: 10.1021/bi9917636. [DOI] [PubMed] [Google Scholar]
  14. Goto N. K., Gardner K. H., Mueller G. A., Willis R. C., Kay L. E. A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR. 1999 Apr;13(4):369–374. doi: 10.1023/a:1008393201236. [DOI] [PubMed] [Google Scholar]
  15. Goto N. K., Kay L. E. New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol. 2000 Oct;10(5):585–592. doi: 10.1016/s0959-440x(00)00135-4. [DOI] [PubMed] [Google Scholar]
  16. Griffin R. G. Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol. 1998 Jul;5 (Suppl):508–512. doi: 10.1038/749. [DOI] [PubMed] [Google Scholar]
  17. Gu Z. T., Opella S. J. Two- and three-dimensional 1H/13C PISEMA experiments and their application to backbone and side chain sites of amino acids and peptides. J Magn Reson. 1999 Oct;140(2):340–346. doi: 10.1006/jmre.1999.1825. [DOI] [PubMed] [Google Scholar]
  18. Hong M. Determination of multiple ***φ***-torsion angles in proteins by selective and extensive (13)C labeling and two-dimensional solid-state NMR. J Magn Reson. 1999 Aug;139(2):389–401. doi: 10.1006/jmre.1999.1805. [DOI] [PubMed] [Google Scholar]
  19. Hong M., Gross J. D., Hu W., Griffin R. G. Determination of the peptide torsion angle phi by 15N chemical shift and 13Calpha-1Halpha dipolar tensor correlation in solid-state MAS NMR. J Magn Reson. 1998 Nov;135(1):169–177. doi: 10.1006/jmre.1998.1573. [DOI] [PubMed] [Google Scholar]
  20. Hong M., Jakes K. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR. 1999 May;14(1):71–74. doi: 10.1023/a:1008334930603. [DOI] [PubMed] [Google Scholar]
  21. Hong M. Resonance assignment of 13C/15N labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR. J Biomol NMR. 1999 Sep;15(1):1–14. doi: 10.1023/a:1008334204412. [DOI] [PubMed] [Google Scholar]
  22. Ishii Y., Yesinowski J. P., Tycko R. Sensitivity enhancement in solid-state (13)C NMR of synthetic polymers and biopolymers by (1)H NMR detection with high-speed magic angle spinning. J Am Chem Soc. 2001 Mar 28;123(12):2921–2922. doi: 10.1021/ja015505j. [DOI] [PubMed] [Google Scholar]
  23. Jakeman D. L., Mitchell D. J., Shuttleworth W. A., Evans J. N. Effects of sample preparation conditions on biomolecular solid-state NMR lineshapes. J Biomol NMR. 1998 Oct;12(3):417–421. doi: 10.1023/a:1008305118426. [DOI] [PubMed] [Google Scholar]
  24. Jaroniec C. P., Tounge B. A., Herzfeld J., Griffin R. G. Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate (13)C-(15)N distance measurements in uniformly (13)C,(15)N-labeled peptides. J Am Chem Soc. 2001 Apr 18;123(15):3507–3519. doi: 10.1021/ja003266e. [DOI] [PubMed] [Google Scholar]
  25. Karle I. L. Water structure in [Phe4 Val6] antamanide X 12H2O crystallized from dioxane. Int J Pept Protein Res. 1986 Jul;28(1):6–14. doi: 10.1111/j.1399-3011.1986.tb03224.x. [DOI] [PubMed] [Google Scholar]
  26. Ketchem R. R., Lee K. C., Huo S., Cross T. A. Macromolecular structural elucidation with solid-state NMR-derived orientational constraints. J Biomol NMR. 1996 Jul;8(1):1–14. doi: 10.1007/BF00198135. [DOI] [PubMed] [Google Scholar]
  27. Labudde D., Leitner D., Krüger M., Oschkinat H. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts. J Biomol NMR. 2003 Jan;25(1):41–53. doi: 10.1023/a:1021952400388. [DOI] [PubMed] [Google Scholar]
  28. Ladizhansky Vladimir, Veshtort Mikhail, Griffin Robert G. NMR determination of the torsion angle psi in alpha-helical peptides and proteins: the HCCN dipolar correlation experiment. J Magn Reson. 2002 Feb;154(2):317–324. doi: 10.1006/jmre.2001.2488. [DOI] [PubMed] [Google Scholar]
  29. Lange Adam, Luca Sorin, Baldus Marc. Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J Am Chem Soc. 2002 Aug 21;124(33):9704–9705. doi: 10.1021/ja026691b. [DOI] [PubMed] [Google Scholar]
  30. Lee K. M., Androphy E. J., Baleja J. D. A novel method for selective isotope labeling of bacterially expressed proteins. J Biomol NMR. 1995 Jan;5(1):93–96. doi: 10.1007/BF00227474. [DOI] [PubMed] [Google Scholar]
  31. Luca Sorin, Baldus Marc. Enhanced spectral resolution in immobilized peptides and proteins by combining chemical shift sum and difference spectroscopy. J Magn Reson. 2002 Dec;159(2):243–249. doi: 10.1016/s1090-7807(02)00019-8. [DOI] [PubMed] [Google Scholar]
  32. Ma Che, Marassi Francesca M., Jones David H., Straus Suzana K., Bour Stephan, Strebel Klaus, Schubert Ulrich, Oblatt-Montal Myrta, Montal Mauricio, Opella Stanley J. Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci. 2002 Mar;11(3):546–557. doi: 10.1110/ps.37302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Marassi Francesca M., Opella Stanley J. Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci. 2003 Mar;12(3):403–411. doi: 10.1110/ps.0211503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McDermott A., Polenova T., Bockmann A., Zilm K. W., Paulson E. K., Martin R. W., Montelione G. T., Paulsen E. K. Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state. J Biomol NMR. 2000 Mar;16(3):209–219. doi: 10.1023/a:1008391625633. [DOI] [PubMed] [Google Scholar]
  35. Morgan W. D., Kragt A., Feeney J. Expression of deuterium-isotope-labelled protein in the yeast pichia pastoris for NMR studies. J Biomol NMR. 2000 Aug;17(4):337–347. doi: 10.1023/a:1008313530207. [DOI] [PubMed] [Google Scholar]
  36. Nomura K., Takegoshi K., Terao T., Uchida K., Kainosho M. Three-dimensional structure determination of a uniformly labeled molecule by frequency-selective dipolar recoupling under magic-angle spinning. J Biomol NMR. 2000 Jun;17(2):111–123. doi: 10.1023/a:1008398906753. [DOI] [PubMed] [Google Scholar]
  37. Opella S. J., Marassi F. M., Gesell J. J., Valente A. P., Kim Y., Oblatt-Montal M., Montal M. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol. 1999 Apr;6(4):374–379. doi: 10.1038/7610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Opella S. J. NMR and membrane proteins. Nat Struct Biol. 1997 Oct;4 (Suppl):845–848. [PubMed] [Google Scholar]
  39. Otomo T., Teruya K., Uegaki K., Yamazaki T., Kyogoku Y. Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR. 1999 Jun;14(2):105–114. doi: 10.1023/a:1008308128050. [DOI] [PubMed] [Google Scholar]
  40. Ottleben H., Haasemann M., Ramachandran R., Müller-Esterl W., Brown L. R. NMR investigations of recombinant 15N/13C/2H-labeled bradykinin bound to a Fab mimic of the B2 receptor. Receptors Channels. 1997;5(3-4):237–241. [PubMed] [Google Scholar]
  41. Pauli J., Baldus M., van Rossum B., de Groot H., Oschkinat H. Backbone and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla. Chembiochem. 2001 Apr 2;2(4):272–281. doi: 10.1002/1439-7633(20010401)2:4<272::AID-CBIC272>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  42. Pauli J., van Rossum B., Förster H., de Groot H. J., Oschkinat H. Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson. 2000 Apr;143(2):411–416. doi: 10.1006/jmre.2000.2029. [DOI] [PubMed] [Google Scholar]
  43. Perler F. B. Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell. 1998 Jan 9;92(1):1–4. doi: 10.1016/s0092-8674(00)80892-2. [DOI] [PubMed] [Google Scholar]
  44. Reif B., Hohwy M., Jaroniec C. P., Rienstra C. M., Griffin R. G. NH-NH vector correlation in peptides by solid-state NMR. J Magn Reson. 2000 Jul;145(1):132–141. doi: 10.1006/jmre.2000.2067. [DOI] [PubMed] [Google Scholar]
  45. Reif B., Jaroniec C. P., Rienstra C. M., Hohwy M., Griffin R. G. 1H-1H MAS correlation spectroscopy and distance measurements in a deuterated peptide. J Magn Reson. 2001 Aug;151(2):320–327. doi: 10.1006/jmre.2001.2354. [DOI] [PubMed] [Google Scholar]
  46. Richter G., Kelly M., Krieger C., Yu Y., Bermel W., Karlsson G., Bacher A., Oschkinat H. NMR studies on the 46-kDa dimeric protein, 3,4-dihydroxy-2-butanone 4-phosphate synthase, using 2H, 13C, and 15N-labelling. Eur J Biochem. 1999 Apr;261(1):57–65. doi: 10.1046/j.1432-1327.1999.00211.x. [DOI] [PubMed] [Google Scholar]
  47. Saitô H., Tuzi S., Yamaguchi S., Tanio M., Naito A. Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR. Biochim Biophys Acta. 2000 Aug 30;1460(1):39–48. doi: 10.1016/s0005-2728(00)00128-6. [DOI] [PubMed] [Google Scholar]
  48. Samoson A., Tuherm T., Gan Z. High-field high-speed MAS resolution enhancement in 1H NMR spectroscopy of solids. Solid State Nucl Magn Reson. 2001 Nov-Dec;20(3-4):130–136. doi: 10.1006/snmr.2001.0037. [DOI] [PubMed] [Google Scholar]
  49. Schaefer J. REDOR-determined distances from heterospins to clusters of 13C labels. J Magn Reson. 1999 Mar;137(1):272–275. doi: 10.1006/jmre.1998.1643. [DOI] [PubMed] [Google Scholar]
  50. Schnell I., Spiess H. W. High-resolution 1H NMR spectroscopy in the solid state: very fast sample rotation and multiple-quantum coherences. J Magn Reson. 2001 Aug;151(2):153–227. doi: 10.1006/jmre.2001.2336. [DOI] [PubMed] [Google Scholar]
  51. Shan X., Gardner K. H., Muhandiram D. R., Kay L. E., Arrowsmith C. H. Subunit-specific backbone NMR assignments of a 64 kDa trp repressor/DNA complex: a role for N-terminal residues in tandem binding. J Biomol NMR. 1998 Apr;11(3):307–318. doi: 10.1023/a:1008257803130. [DOI] [PubMed] [Google Scholar]
  52. Smith S. O., Aschheim K., Groesbeek M. Magic angle spinning NMR spectroscopy of membrane proteins. Q Rev Biophys. 1996 Dec;29(4):395–449. doi: 10.1017/s0033583500005898. [DOI] [PubMed] [Google Scholar]
  53. Straus S. K., Bremi T., Ernst R. R. Experiments and strategies for the assignment of fully 13C/15N-labelled polypeptides by solid state NMR. J Biomol NMR. 1998 Jul;12(1):39–50. doi: 10.1023/a:1008280716360. [DOI] [PubMed] [Google Scholar]
  54. Suter D, Ernst RR. Spin diffusion in resolved solid-state NMR spectra. Phys Rev B Condens Matter. 1985 Nov 1;32(9):5608–5627. doi: 10.1103/physrevb.32.5608. [DOI] [PubMed] [Google Scholar]
  55. Takegoshi K., Imaizumi T., Terao T. One- and two-dimensional 13C-1H/15N- 1H dipolar correlation experiments under fast magic-angle spinning for determining the peptide dihedral angle phi. Solid State Nucl Magn Reson. 2000 Jul;16(4):271–278. doi: 10.1016/s0926-2040(00)00076-x. [DOI] [PubMed] [Google Scholar]
  56. Thompson Lynmarie K. Solid-state NMR studies of the structure and mechanisms of proteins. Curr Opin Struct Biol. 2002 Oct;12(5):661–669. doi: 10.1016/s0959-440x(02)00374-3. [DOI] [PubMed] [Google Scholar]
  57. Tycko R. Biomolecular solid state NMR: advances in structural methodology and applications to peptide and protein fibrils. Annu Rev Phys Chem. 2001;52:575–606. doi: 10.1146/annurev.physchem.52.1.575. [DOI] [PubMed] [Google Scholar]
  58. Tycko Robert, Ishii Yoshitaka. Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling. J Am Chem Soc. 2003 Jun 4;125(22):6606–6607. doi: 10.1021/ja0342042. [DOI] [PubMed] [Google Scholar]
  59. Wang J., Kim S., Kovacs F., Cross T. A. Structure of the transmembrane region of the M2 protein H(+) channel. Protein Sci. 2001 Nov;10(11):2241–2250. doi: 10.1110/ps.17901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Williamson P. T. F., Bains S., Chung C., Cooke R., Watts A. Probing the environment of neurotensin whilst bound to the neurotensin receptor by solid state NMR. FEBS Lett. 2002 May 8;518(1-3):111–115. doi: 10.1016/s0014-5793(02)02656-x. [DOI] [PubMed] [Google Scholar]
  61. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  62. de Groot H. J. Solid-state NMR spectroscopy applied to membrane proteins. Curr Opin Struct Biol. 2000 Oct;10(5):593–600. doi: 10.1016/s0959-440x(00)00136-6. [DOI] [PubMed] [Google Scholar]
  63. van Rossum Barth J., Schulten Els A. M., Raap Jan, Oschkinat Hartmut, de Groot Huub J. M. A 3-D structural model of solid self-assembled chlorophyll a/H(2)O from multispin labeling and MAS NMR 2-D dipolar correlation spectroscopy in high magnetic field. J Magn Reson. 2002 Mar;155(1):1–14. doi: 10.1006/jmre.2002.2502. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES