Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Jun 29;359(1446):919–927. doi: 10.1098/rstb.2003.1461

The archaeal Sec-dependent protein translocation pathway.

Albert Bolhuis 1
PMCID: PMC1693384  PMID: 15306407

Abstract

Over the past three decades, transport of proteins across cellular membranes has been studied extensively in various model systems. One of the major transport routes, the so-called Sec pathway, is conserved in all domains of life. Very little is known about this pathway in the third domain of life, archaea. The core components of the archaeal, bacterial and eucaryal Sec machinery are similar, although the archaeal components appear more closely related to their eucaryal counterparts. Interestingly, the accessory factors of the translocation machinery are similar to bacterial components, which indicates a unique hybrid nature of the archaeal translocase complex. The mechanism of protein translocation in archaea is completely unknown. Based on genomic sequencing data, the most likely system for archaeal protein translocation is similar to the eucaryal co-translational translocation pathway for protein import into the endoplasmic reticulum, in which a protein is pushed across the translocation channel by the ribosome. However, other models can also be envisaged, such as a bacterial-like system in which a protein is translocated post-translationally with the aid of a motor protein analogous to the bacterial ATPase SecA. This review discusses the different models. Furthermore, an overview is given of some of the other components that may be involved in the protein translocation process, such as those required for protein targeting, folding and post-translational modification.

Full Text

The Full Text of this article is available as a PDF (179.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman E., Kumamoto C. A., Emr S. D. Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J. 1991 Feb;10(2):239–245. doi: 10.1002/j.1460-2075.1991.tb07943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barns S. M., Delwiche C. F., Palmer J. D., Pace N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9188–9193. doi: 10.1073/pnas.93.17.9188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhuiyan S. H., Gowda K., Hotokezaka H., Zwieb C. Assembly of archaeal signal recognition particle from recombinant components. Nucleic Acids Res. 2000 Mar 15;28(6):1365–1373. doi: 10.1093/nar/28.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolhuis Albert. Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? Microbiology. 2002 Nov;148(Pt 11):3335–3346. doi: 10.1099/00221287-148-11-3335. [DOI] [PubMed] [Google Scholar]
  5. Bunai K., Yamada K., Hayashi K., Nakamura K., Yamane K. Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. J Biochem. 1999 Jan;125(1):151–159. doi: 10.1093/oxfordjournals.jbchem.a022252. [DOI] [PubMed] [Google Scholar]
  6. Burda P., Aebi M. The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta. 1999 Jan 6;1426(2):239–257. doi: 10.1016/s0304-4165(98)00127-5. [DOI] [PubMed] [Google Scholar]
  7. Cao Thien B., Saier Milton H., Jr The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta. 2003 Jan 10;1609(1):115–125. doi: 10.1016/s0005-2736(02)00662-4. [DOI] [PubMed] [Google Scholar]
  8. Chirico W. J., Waters M. G., Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature. 1988 Apr 28;332(6167):805–810. doi: 10.1038/332805a0. [DOI] [PubMed] [Google Scholar]
  9. Dale H., Angevine C. M., Krebs M. P. Ordered membrane insertion of an archaeal opsin in vivo. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7847–7852. doi: 10.1073/pnas.140216497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DeLong E. F., Wu K. Y., Prézelin B. B., Jovine R. V. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20;371(6499):695–697. doi: 10.1038/371695a0. [DOI] [PubMed] [Google Scholar]
  11. Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988 Apr 28;332(6167):800–805. doi: 10.1038/332800a0. [DOI] [PubMed] [Google Scholar]
  12. Devillers-Thiery A., Kindt T., Scheele G., Blobel G. Homology in amino-terminal sequence of precursors to pancreatic secretory proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5016–5020. doi: 10.1073/pnas.72.12.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Driessen A. J. Bacterial protein translocation: kinetic and thermodynamic role of ATP and the protonmotive force. Trends Biochem Sci. 1992 Jun;17(6):219–223. doi: 10.1016/0968-0004(92)90381-i. [DOI] [PubMed] [Google Scholar]
  14. Duong F., Wickner W. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J. 1997 Aug 15;16(16):4871–4879. doi: 10.1093/emboj/16.16.4871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Economou A., Pogliano J. A., Beckwith J., Oliver D. B., Wickner W. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell. 1995 Dec 29;83(7):1171–1181. doi: 10.1016/0092-8674(95)90143-4. [DOI] [PubMed] [Google Scholar]
  16. Eichler J. Archaeal protein translocation crossing membranes in the third domain of life. Eur J Biochem. 2000 Jun;267(12):3402–3412. doi: 10.1046/j.1432-1327.2000.01396.x. [DOI] [PubMed] [Google Scholar]
  17. Eichler J., Moll R. The signal recognition particle of Archaea. Trends Microbiol. 2001 Mar;9(3):130–136. doi: 10.1016/s0966-842x(01)01954-0. [DOI] [PubMed] [Google Scholar]
  18. Eichler J. Post-translational modification of the S-layer glycoprotein occurs following translocation across the plasma membrane of the haloarchaeon Haloferax volcanii. Eur J Biochem. 2001 Aug;268(15):4366–4373. doi: 10.1046/j.1432-1327.2001.02361.x. [DOI] [PubMed] [Google Scholar]
  19. Evans E. A., Gilmore R., Blobel G. Purification of microsomal signal peptidase as a complex. Proc Natl Acad Sci U S A. 1986 Feb;83(3):581–585. doi: 10.1073/pnas.83.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fewell S. W., Travers K. J., Weissman J. S., Brodsky J. L. The action of molecular chaperones in the early secretory pathway. Annu Rev Genet. 2001;35:149–191. doi: 10.1146/annurev.genet.35.102401.090313. [DOI] [PubMed] [Google Scholar]
  21. Fons Ryen D., Bogert Brigitte A., Hegde Ramanujan S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol. 2003 Feb 10;160(4):529–539. doi: 10.1083/jcb.200210095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fröderberg Linda, Houben Edith, Samuelson James C., Chen Minyong, Park Sei-Kyoung, Phillips Gregory J., Dalbey Ross, Luirink Joen, De Gier Jan-Willem L. Versatility of inner membrane protein biogenesis in Escherichia coli. Mol Microbiol. 2003 Feb;47(4):1015–1027. doi: 10.1046/j.1365-2958.2003.03346.x. [DOI] [PubMed] [Google Scholar]
  23. Gao Y., Thomas J. O., Chow R. L., Lee G. H., Cowan N. J. A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell. 1992 Jun 12;69(6):1043–1050. doi: 10.1016/0092-8674(92)90622-j. [DOI] [PubMed] [Google Scholar]
  24. Grauschopf U., Winther J. R., Korber P., Zander T., Dallinger P., Bardwell J. C. Why is DsbA such an oxidizing disulfide catalyst? Cell. 1995 Dec 15;83(6):947–955. doi: 10.1016/0092-8674(95)90210-4. [DOI] [PubMed] [Google Scholar]
  25. Gribaldo S., Lumia V., Creti R., Conway de Macario E., Sanangelantoni A., Cammarano P. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J Bacteriol. 1999 Jan;181(2):434–443. doi: 10.1128/jb.181.2.434-443.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gropp R., Gropp F., Betlach M. C. Association of the halobacterial 7S RNA to the polysome correlates with expression of the membrane protein bacterioopsin. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1204–1208. doi: 10.1073/pnas.89.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Guagliardi A., Cerchia L., Bartolucci S., Rossi M. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 1994 Sep;3(9):1436–1443. doi: 10.1002/pro.5560030910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hainzl Tobias, Huang Shenghua, Sauer-Eriksson A. Elisabeth. Structure of the SRP19 RNA complex and implications for signal recognition particle assembly. Nature. 2002 Jun 5;417(6890):767–771. doi: 10.1038/nature00768. [DOI] [PubMed] [Google Scholar]
  29. Helenius A., Aebi M. Intracellular functions of N-linked glycans. Science. 2001 Mar 23;291(5512):2364–2369. doi: 10.1126/science.291.5512.2364. [DOI] [PubMed] [Google Scholar]
  30. Huber Harald, Hohn Michael J., Rachel Reinhard, Fuchs Tanja, Wimmer Verena C., Stetter Karl O. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature. 2002 May 2;417(6884):63–67. doi: 10.1038/417063a. [DOI] [PubMed] [Google Scholar]
  31. Irihimovitch Vered, Ring Gabriela, Elkayam Tsiona, Konrad Zvia, Eichler Jerry. Isolation of fusion proteins containing SecY and SecE, components of the protein translocation complex from the halophilic archaeon Haloferax volcanii. Extremophiles. 2002 Oct 3;7(1):71–77. doi: 10.1007/s00792-002-0297-0. [DOI] [PubMed] [Google Scholar]
  32. Johnson A. E., van Waes M. A. The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol. 1999;15:799–842. doi: 10.1146/annurev.cellbio.15.1.799. [DOI] [PubMed] [Google Scholar]
  33. Kaplan H. A., Welply J. K., Lennarz W. J. Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. Biochim Biophys Acta. 1987 Jun 24;906(2):161–173. doi: 10.1016/0304-4157(87)90010-4. [DOI] [PubMed] [Google Scholar]
  34. Karner M. B., DeLong E. F., Karl D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001 Jan 25;409(6819):507–510. doi: 10.1038/35054051. [DOI] [PubMed] [Google Scholar]
  35. Keenan R. J., Freymann D. M., Stroud R. M., Walter P. The signal recognition particle. Annu Rev Biochem. 2001;70:755–775. doi: 10.1146/annurev.biochem.70.1.755. [DOI] [PubMed] [Google Scholar]
  36. Kinch Lisa N., Saier Milton H., Jr, Grishin Nick V. Sec61beta--a component of the archaeal protein secretory system. Trends Biochem Sci. 2002 Apr;27(4):170–171. doi: 10.1016/s0968-0004(01)02055-2. [DOI] [PubMed] [Google Scholar]
  37. Kobayashi T., Nishizaki R., Ikezawa H. The presence of GPI-linked protein(s) in an archaeobacterium, Sulfolobus acidocaldarius, closely related to eukaryotes. Biochim Biophys Acta. 1997 Feb 11;1334(1):1–4. doi: 10.1016/s0304-4165(96)00099-2. [DOI] [PubMed] [Google Scholar]
  38. Konrad Zvia, Eichler Jerry. Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation. Biochem J. 2002 Sep 15;366(Pt 3):959–964. doi: 10.1042/BJ20020757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kusukawa N., Yura T., Ueguchi C., Akiyama Y., Ito K. Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J. 1989 Nov;8(11):3517–3521. doi: 10.1002/j.1460-2075.1989.tb08517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lechner J., Sumper M. The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem. 1987 Jul 15;262(20):9724–9729. [PubMed] [Google Scholar]
  41. Lechner J., Wieland F. Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem. 1989;58:173–194. doi: 10.1146/annurev.bi.58.070189.001133. [DOI] [PubMed] [Google Scholar]
  42. Leroux M. R., Fändrich M., Klunker D., Siegers K., Lupas A. N., Brown J. R., Schiebel E., Dobson C. M., Hartl F. U. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J. 1999 Dec 1;18(23):6730–6743. doi: 10.1093/emboj/18.23.6730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mallick Parag, Boutz Daniel R., Eisenberg David, Yeates Todd O. Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proc Natl Acad Sci U S A. 2002 Jul 9;99(15):9679–9684. doi: 10.1073/pnas.142310499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Manting E. H., Driessen A. J. Escherichia coli translocase: the unravelling of a molecular machine. Mol Microbiol. 2000 Jul;37(2):226–238. doi: 10.1046/j.1365-2958.2000.01980.x. [DOI] [PubMed] [Google Scholar]
  45. Maruyama T., Furutani M. Archaeal peptidyl prolyl cis-trans isomerases (PPIases). Front Biosci. 2000 Sep 1;5:D821–D836. doi: 10.2741/maruyama. [DOI] [PubMed] [Google Scholar]
  46. Montoya G., Kaat K., Moll R., Schäfer G., Sinning I. The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex. Structure. 2000 May 15;8(5):515–525. doi: 10.1016/s0969-2126(00)00131-3. [DOI] [PubMed] [Google Scholar]
  47. Müller J. P., Bron S., Venema G., van Dijl J. M. Chaperone-like activities of the CsaA protein of Bacillus subtilis. Microbiology. 2000 Jan;146(Pt 1):77–88. doi: 10.1099/00221287-146-1-77. [DOI] [PubMed] [Google Scholar]
  48. Müller J. P., Ozegowski J., Vettermann S., Swaving J., Van Wely K. H., Driessen A. J. Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. Biochem J. 2000 Jun 1;348(Pt 2):367–373. [PMC free article] [PubMed] [Google Scholar]
  49. Müller J., Walter F., van Dijl J. M., Behnke D. Suppression of the growth and export defects of an Escherichia coli secA(Ts) mutant by a gene cloned from Bacillus subtilis. Mol Gen Genet. 1992 Oct;235(1):89–96. doi: 10.1007/BF00286185. [DOI] [PubMed] [Google Scholar]
  50. Nishiyama K., Fukuda A., Morita K., Tokuda H. Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. EMBO J. 1999 Feb 15;18(4):1049–1058. doi: 10.1093/emboj/18.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Nouwen N., van der Laan M., Driessen A. J. SecDFyajC is not required for the maintenance of the proton motive force. FEBS Lett. 2001 Nov 9;508(1):103–106. doi: 10.1016/s0014-5793(01)03033-2. [DOI] [PubMed] [Google Scholar]
  52. Okochi Mina, Yoshida Takao, Maruyama Tadashi, Kawarabayasi Yutaka, Kikuchi Hisashi, Yohda Masafumi. Pyrococcus prefoldin stabilizes protein-folding intermediates and transfers them to chaperonins for correct folding. Biochem Biophys Res Commun. 2002 Mar 8;291(4):769–774. doi: 10.1006/bbrc.2002.6523. [DOI] [PubMed] [Google Scholar]
  53. Oubridge Chris, Kuglstatter Andreas, Jovine Luca, Nagai Kiyoshi. Crystal structure of SRP19 in complex with the S domain of SRP RNA and its implication for the assembly of the signal recognition particle. Mol Cell. 2002 Jun;9(6):1251–1261. doi: 10.1016/s1097-2765(02)00530-0. [DOI] [PubMed] [Google Scholar]
  54. Pakhomova Olga N., Deep Shashank, Huang Qiaojia, Zwieb Christian, Hinck Andrew P. Solution structure of protein SRP19 of Archaeoglobus fulgidus signal recognition particle. J Mol Biol. 2002 Mar 15;317(1):145–158. doi: 10.1006/jmbi.2002.5411. [DOI] [PubMed] [Google Scholar]
  55. Panzner S., Dreier L., Hartmann E., Kostka S., Rapoport T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell. 1995 May 19;81(4):561–570. doi: 10.1016/0092-8674(95)90077-2. [DOI] [PubMed] [Google Scholar]
  56. Pohlschröder M., Prinz W. A., Hartmann E., Beckwith J. Protein translocation in the three domains of life: variations on a theme. Cell. 1997 Nov 28;91(5):563–566. doi: 10.1016/s0092-8674(00)80443-2. [DOI] [PubMed] [Google Scholar]
  57. Ritz D., Beckwith J. Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol. 2001;55:21–48. doi: 10.1146/annurev.micro.55.1.21. [DOI] [PubMed] [Google Scholar]
  58. Robinson C., Bolhuis A. Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol. 2001 May;2(5):350–356. doi: 10.1038/35073038. [DOI] [PubMed] [Google Scholar]
  59. Rose R. Wesley, Brüser Thomas, Kissinger Jessica C., Pohlschröder Mechthild. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol. 2002 Aug;45(4):943–950. doi: 10.1046/j.1365-2958.2002.03090.x. [DOI] [PubMed] [Google Scholar]
  60. Rose R. Wesley, Pohlschröder Mechthild. In vivo analysis of an essential archaeal signal recognition particle in its native host. J Bacteriol. 2002 Jun;184(12):3260–3267. doi: 10.1128/JB.184.12.3260-3267.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Schatz P. J., Beckwith J. Genetic analysis of protein export in Escherichia coli. Annu Rev Genet. 1990;24:215–248. doi: 10.1146/annurev.ge.24.120190.001243. [DOI] [PubMed] [Google Scholar]
  62. Schäfer G., Engelhard M., Müller V. Bioenergetics of the Archaea. Microbiol Mol Biol Rev. 1999 Sep;63(3):570–620. doi: 10.1128/mmbr.63.3.570-620.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Scotti P. A., Urbanus M. L., Brunner J., de Gier J. W., von Heijne G., van der Does C., Driessen A. J., Oudega B., Luirink J. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 2000 Feb 15;19(4):542–549. doi: 10.1093/emboj/19.4.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Seluanov A., Bibi E. FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins. J Biol Chem. 1997 Jan 24;272(4):2053–2055. doi: 10.1074/jbc.272.4.2053. [DOI] [PubMed] [Google Scholar]
  65. Siegers K., Waldmann T., Leroux M. R., Grein K., Shevchenko A., Schiebel E., Hartl F. U. Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J. 1999 Jan 4;18(1):75–84. doi: 10.1093/emboj/18.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Tjalsma H., Bolhuis A., Jongbloed J. D., Bron S., van Dijl J. M. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev. 2000 Sep;64(3):515–547. doi: 10.1128/mmbr.64.3.515-547.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Tjalsma H., Bolhuis A., van Roosmalen M. L., Wiegert T., Schumann W., Broekhuizen C. P., Quax W. J., Venema G., Bron S., van Dijl J. M. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev. 1998 Aug 1;12(15):2318–2331. doi: 10.1101/gad.12.15.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Tozik Irit, Huang Qiaojia, Zwieb Christian, Eichler Jerry. Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii. Nucleic Acids Res. 2002 Oct 1;30(19):4166–4175. doi: 10.1093/nar/gkf548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Trent J. D., Nimmesgern E., Wall J. S., Hartl F. U., Horwich A. L. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature. 1991 Dec 12;354(6353):490–493. doi: 10.1038/354490a0. [DOI] [PubMed] [Google Scholar]
  70. Tseng T. T., Gratwick K. S., Kollman J., Park D., Nies D. H., Goffeau A., Saier M. H., Jr The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol. 1999 Aug;1(1):107–125. [PubMed] [Google Scholar]
  71. Ulbrandt N. D., Newitt J. A., Bernstein H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell. 1997 Jan 24;88(2):187–196. doi: 10.1016/s0092-8674(00)81839-5. [DOI] [PubMed] [Google Scholar]
  72. Vainberg I. E., Lewis S. A., Rommelaere H., Ampe C., Vandekerckhove J., Klein H. L., Cowan N. J. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell. 1998 May 29;93(5):863–873. doi: 10.1016/s0092-8674(00)81446-4. [DOI] [PubMed] [Google Scholar]
  73. Van den Berg Bert, Clemons William M., Jr, Collinson Ian, Modis Yorgo, Hartmann Enno, Harrison Stephen C., Rapoport Tom A. X-ray structure of a protein-conducting channel. Nature. 2003 Dec 3;427(6969):36–44. doi: 10.1038/nature02218. [DOI] [PubMed] [Google Scholar]
  74. Voigt S., Jungnickel B., Hartmann E., Rapoport T. A. Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J Cell Biol. 1996 Jul;134(1):25–35. doi: 10.1083/jcb.134.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Waldmann T., Nimmesgern E., Nitsch M., Peters J., Pfeifer G., Müller S., Kellermann J., Engel A., Hartl F. U., Baumeister W. The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC. Eur J Biochem. 1995 Feb 1;227(3):848–856. doi: 10.1111/j.1432-1033.1995.tb20210.x. [DOI] [PubMed] [Google Scholar]
  76. Wang L., Dobberstein B. Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum. FEBS Lett. 1999 Sep 3;457(3):316–322. doi: 10.1016/s0014-5793(99)01075-3. [DOI] [PubMed] [Google Scholar]
  77. Wild J., Altman E., Yura T., Gross C. A. DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev. 1992 Jul;6(7):1165–1172. doi: 10.1101/gad.6.7.1165. [DOI] [PubMed] [Google Scholar]
  78. Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Wülfing C., Plückthun A. Protein folding in the periplasm of Escherichia coli. Mol Microbiol. 1994 Jun;12(5):685–692. doi: 10.1111/j.1365-2958.1994.tb01056.x. [DOI] [PubMed] [Google Scholar]
  81. Yaffe M. B., Farr G. W., Miklos D., Horwich A. L., Sternlicht M. L., Sternlicht H. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature. 1992 Jul 16;358(6383):245–248. doi: 10.1038/358245a0. [DOI] [PubMed] [Google Scholar]
  82. Yen M. R., Harley K. T., Tseng Y. H., Saier M. H., Jr Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol Lett. 2001 Nov 13;204(2):223–231. doi: 10.1111/j.1574-6968.2001.tb10889.x. [DOI] [PubMed] [Google Scholar]
  83. Young B. P., Craven R. A., Reid P. J., Willer M., Stirling C. J. Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J. 2001 Jan 15;20(1-2):262–271. doi: 10.1093/emboj/20.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. van Wely K. H., Swaving J., Freudl R., Driessen A. J. Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev. 2001 Aug;25(4):437–454. doi: 10.1111/j.1574-6976.2001.tb00586.x. [DOI] [PubMed] [Google Scholar]
  85. van de Vossenberg J. L., Driessen A. J., Konings W. N. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles. 1998 Aug;2(3):163–170. doi: 10.1007/s007920050056. [DOI] [PubMed] [Google Scholar]
  86. von Heijne G. The structure of signal peptides from bacterial lipoproteins. Protein Eng. 1989 May;2(7):531–534. doi: 10.1093/protein/2.7.531. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES