Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Jul 29;359(1447):1067–1073. doi: 10.1098/rstb.2004.1481

Influenza as a model system for studying the cross-species transfer and evolution of the SARS coronavirus.

Robin M Bush 1
PMCID: PMC1693400  PMID: 15306391

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) moved into humans from a reservoir species and subsequently caused an epidemic in its new host. We know little about the processes that allowed the cross-species transfer of this previously unknown virus. I discuss what we have learned about the movement of viruses into humans from studies of influenza A, both how it crossed from birds to humans and how it subsequently evolved within the human population. Starting with a brief review of severe acute respiratory syndrome to highlight the kinds of problems we face in learning about this viral disease, I then turn to influenza A, focusing on three topics. First, I present a reanalysis of data used to test the hypothesis that swine served as a "mixing vessel" or intermediate host in the transmission of avian influenza to humans during the 1918 "Spanish flu" pandemic. Second, I review studies of archived viruses from the three recent influenza pandemics. Third, I discuss current limitations in using molecular data to study the evolution of infectious disease. Although influenza A and SARS-CoV differ in many ways, our knowledge of influenza A may provide important clues about what limits or favours cross-species transfers and subsequent epidemics of newly emerging pathogens.

Full Text

The Full Text of this article is available as a PDF (113.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bush R. M., Fitch W. M., Bender C. A., Cox N. J. Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol. 1999 Nov;16(11):1457–1465. doi: 10.1093/oxfordjournals.molbev.a026057. [DOI] [PubMed] [Google Scholar]
  2. Bush R. M., Smith C. B., Cox N. J., Fitch W. M. Effects of passage history and sampling bias on phylogenetic reconstruction of human influenza A evolution. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):6974–6980. doi: 10.1073/pnas.97.13.6974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Claas E. C., Osterhaus A. D., van Beek R., De Jong J. C., Rimmelzwaan G. F., Senne D. A., Krauss S., Shortridge K. F., Webster R. G. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998 Feb 14;351(9101):472–477. doi: 10.1016/S0140-6736(97)11212-0. [DOI] [PubMed] [Google Scholar]
  4. De Jong J. C., Rimmelzwaan G. F., Fouchier R. A., Osterhaus A. D. Influenza virus: a master of metamorphosis. J Infect. 2000 May;40(3):218–228. doi: 10.1053/jinf.2000.0652. [DOI] [PubMed] [Google Scholar]
  5. Drosten Christian, Günther Stephan, Preiser Wolfgang, van der Werf Sylvie, Brodt Hans-Reinhard, Becker Stephan, Rabenau Holger, Panning Marcus, Kolesnikova Larissa, Fouchier Ron A. M. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003 Apr 10;348(20):1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
  6. Eickmann Markus, Becker Stephan, Klenk Hans-Dieter, Doerr Hans Wilhelm, Stadler Konrad, Censini Stefano, Guidotti Silvia, Masignani Vega, Scarselli Maria, Mora Marirosa. Phylogeny of the SARS coronavirus. Science. 2003 Nov 28;302(5650):1504–1505. doi: 10.1126/science.302.5650.1504b. [DOI] [PubMed] [Google Scholar]
  7. Fanning Thomas G., Slemons Richard D., Reid Ann H., Janczewski Thomas A., Dean James, Taubenberger Jeffery K. 1917 avian influenza virus sequences suggest that the 1918 pandemic virus did not acquire its hemagglutinin directly from birds. J Virol. 2002 Aug;76(15):7860–7862. doi: 10.1128/JVI.76.15.7860-7862.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fouchier Ron A. M., Kuiken Thijs, Schutten Martin, van Amerongen Geert, van Doornum Gerard J. J., van den Hoogen Bernadette G., Peiris Malik, Lim Wilina, Stöhr Klaus, Osterhaus Albert D. M. E. Aetiology: Koch's postulates fulfilled for SARS virus. Nature. 2003 May 15;423(6937):240–240. doi: 10.1038/423240a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gamblin S. J., Haire L. F., Russell R. J., Stevens D. J., Xiao B., Ha Y., Vasisht N., Steinhauer D. A., Daniels R. S., Elliot A. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science. 2004 Feb 5;303(5665):1838–1842. doi: 10.1126/science.1093155. [DOI] [PubMed] [Google Scholar]
  10. Gibbs M. J., Armstrong J. S., Gibbs A. J. Recombination in the hemagglutinin gene of the 1918 "Spanish flu". Science. 2001 Sep 7;293(5536):1842–1845. doi: 10.1126/science.1061662. [DOI] [PubMed] [Google Scholar]
  11. Guan Y., Peiris J. S. M., Zheng B., Poon L. L. M., Chan K. H., Zeng F. Y., Chan C. W. M., Chan M. N., Chen J. D., Chow K. Y. C. Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet. 2004 Jan 10;363(9403):99–104. doi: 10.1016/S0140-6736(03)15259-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guan Y., Shortridge K. F., Krauss S., Webster R. G. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9363–9367. doi: 10.1073/pnas.96.16.9363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guan Y., Zheng B. J., He Y. Q., Liu X. L., Zhuang Z. X., Cheung C. L., Luo S. W., Li P. H., Zhang L. J., Guan Y. J. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003 Sep 4;302(5643):276–278. doi: 10.1126/science.1087139. [DOI] [PubMed] [Google Scholar]
  14. Hoffmann E., Stech J., Leneva I., Krauss S., Scholtissek C., Chin P. S., Peiris M., Shortridge K. F., Webster R. G. Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J Virol. 2000 Jul;74(14):6309–6315. doi: 10.1128/jvi.74.14.6309-6315.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huelsenbeck J. P., Ronquist F., Nielsen R., Bollback J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science. 2001 Dec 14;294(5550):2310–2314. doi: 10.1126/science.1065889. [DOI] [PubMed] [Google Scholar]
  16. Kawaoka Y., Krauss S., Webster R. G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol. 1989 Nov;63(11):4603–4608. doi: 10.1128/jvi.63.11.4603-4608.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ksiazek Thomas G., Erdman Dean, Goldsmith Cynthia S., Zaki Sherif R., Peret Teresa, Emery Shannon, Tong Suxiang, Urbani Carlo, Comer James A., Lim Wilina. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003 Apr 10;348(20):1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
  18. Kuo Yen-Hong. Extrapolation of correlation between 2 variables in 4 general medical journals. JAMA. 2002 Jun 5;287(21):2815–2817. doi: 10.1001/jama.287.21.2815. [DOI] [PubMed] [Google Scholar]
  19. Marra Marco A., Jones Steven J. M., Astell Caroline R., Holt Robert A., Brooks-Wilson Angela, Butterfield Yaron S. N., Khattra Jaswinder, Asano Jennifer K., Barber Sarah A., Chan Susanna Y. The Genome sequence of the SARS-associated coronavirus. Science. 2003 May 1;300(5624):1399–1404. doi: 10.1126/science.1085953. [DOI] [PubMed] [Google Scholar]
  20. Martina Byron E. E., Haagmans Bart L., Kuiken Thijs, Fouchier Ron A. M., Rimmelzwaan Guus F., Van Amerongen Geert, Peiris J. S. Malik, Lim Wilina, Osterhaus Albert D. M. E. Virology: SARS virus infection of cats and ferrets. Nature. 2003 Oct 30;425(6961):915–915. doi: 10.1038/425915a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matrosovich M. N., Gambaryan A. S., Tuzikov A. B., Byramova N. E., Mochalova L. V., Golbraikh A. A., Shenderovich M. D., Finne J., Bovin N. V. Probing of the receptor-binding sites of the H1 and H3 influenza A and influenza B virus hemagglutinins by synthetic and natural sialosides. Virology. 1993 Sep;196(1):111–121. doi: 10.1006/viro.1993.1459. [DOI] [PubMed] [Google Scholar]
  22. Neumann G., Hatta M., Kawaoka Y. Reverse genetics for the control of avian influenza. Avian Dis. 2003;47(3 Suppl):882–887. doi: 10.1637/0005-2086-47.s3.882. [DOI] [PubMed] [Google Scholar]
  23. Ng Stephen K. C. Possible role of an animal vector in the SARS outbreak at Amoy Gardens. Lancet. 2003 Aug 16;362(9383):570–572. doi: 10.1016/S0140-6736(03)14121-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peiris J. S. M., Lai S. T., Poon L. L. M., Guan Y., Yam L. Y. C., Lim W., Nicholls J., Yee W. K. S., Yan W. W., Cheung M. T. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003 Apr 19;361(9366):1319–1325. doi: 10.1016/S0140-6736(03)13077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peiris M., Yuen K. Y., Leung C. W., Chan K. H., Ip P. L., Lai R. W., Orr W. K., Shortridge K. F. Human infection with influenza H9N2. Lancet. 1999 Sep 11;354(9182):916–917. doi: 10.1016/s0140-6736(99)03311-5. [DOI] [PubMed] [Google Scholar]
  26. Plotkin Joshua B., Dushoff Jonathan, Levin Simon A. Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):6263–6268. doi: 10.1073/pnas.082110799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reid A. H., Fanning T. G., Hultin J. V., Taubenberger J. K. Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1651–1656. doi: 10.1073/pnas.96.4.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reid A. H., Fanning T. G., Slemons R. D., Janczewski T. A., Dean J., Taubenberger J. K. Relationship of pre-1918 avian influenza HA and NP sequences to subsequent avian influenza strains. Avian Dis. 2003;47(3 Suppl):921–925. doi: 10.1637/0005-2086-47.s3.921. [DOI] [PubMed] [Google Scholar]
  29. Rest Joshua S., Mindell David P. SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting. Infect Genet Evol. 2003 Sep;3(3):219–225. doi: 10.1016/j.meegid.2003.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rimmelzwaan G. F., Kuiken T., van Amerongen G., Bestebroer T. M., Fouchier R. A. M., Osterhaus A. D. M. E. A primate model to study the pathogenesis of influenza A (H5N1) virus infection. Avian Dis. 2003;47(3 Suppl):931–933. doi: 10.1637/0005-2086-47.s3.931. [DOI] [PubMed] [Google Scholar]
  31. Rott R. The pathogenic determinant of influenza virus. Vet Microbiol. 1992 Nov;33(1-4):303–310. doi: 10.1016/0378-1135(92)90058-2. [DOI] [PubMed] [Google Scholar]
  32. Ruan Yi Jun, Wei Chia Lin, Ee Ai Ling, Vega Vinsensius B., Thoreau Herve, Su Se Thoe Yun, Chia Jer-Ming, Ng Patrick, Chiu Kuo Ping, Lim Landri. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet. 2003 May 24;361(9371):1779–1785. doi: 10.1016/S0140-6736(03)13414-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scholtissek C., Ludwig S., Fitch W. M. Analysis of influenza A virus nucleoproteins for the assessment of molecular genetic mechanisms leading to new phylogenetic virus lineages. Arch Virol. 1993;131(3-4):237–250. doi: 10.1007/BF01378629. [DOI] [PubMed] [Google Scholar]
  34. Scholtissek C., Rohde W., Von Hoyningen V., Rott R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology. 1978 Jun 1;87(1):13–20. doi: 10.1016/0042-6822(78)90153-8. [DOI] [PubMed] [Google Scholar]
  35. Shortridge K. F. Pandemic influenza: a zoonosis? Semin Respir Infect. 1992 Mar;7(1):11–25. [PubMed] [Google Scholar]
  36. Stavrinides John, Guttman David S. Mosaic evolution of the severe acute respiratory syndrome coronavirus. J Virol. 2004 Jan;78(1):76–82. doi: 10.1128/JVI.78.1.76-82.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stevens James, Corper Adam L., Basler Christopher F., Taubenberger Jeffery K., Palese Peter, Wilson Ian A. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science. 2004 Feb 5;303(5665):1866–1870. doi: 10.1126/science.1093373. [DOI] [PubMed] [Google Scholar]
  38. Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., Perdue M., Swayne D., Bender C., Huang J. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998 Jan 16;279(5349):393–396. doi: 10.1126/science.279.5349.393. [DOI] [PubMed] [Google Scholar]
  39. Taubenberger J. K., Reid A. H., Krafft A. E., Bijwaard K. E., Fanning T. G. Initial genetic characterization of the 1918 "Spanish" influenza virus. Science. 1997 Mar 21;275(5307):1793–1796. doi: 10.1126/science.275.5307.1793. [DOI] [PubMed] [Google Scholar]
  40. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992 Mar;56(1):152–179. doi: 10.1128/mr.56.1.152-179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Worobey Michael, Rambaut Andrew, Pybus Oliver G., Robertson David L. Questioning the evidence for genetic recombination in the 1918 "Spanish flu" virus. Science. 2002 Apr 12;296(5566):211–211. doi: 10.1126/science.296.5566.211a. [DOI] [PubMed] [Google Scholar]
  42. Yang Z. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol. 2000 Nov;51(5):423–432. doi: 10.1007/s002390010105. [DOI] [PubMed] [Google Scholar]
  43. Yang Z., Nielsen R., Goldman N., Pedersen A. M. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000 May;155(1):431–449. doi: 10.1093/genetics/155.1.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yeh Shiou-Hwei, Wang Hurng-Yi, Tsai Ching-Yi, Kao Chuan-Liang, Yang Jyh-Yuan, Liu Hwan-Wun, Su Ih-Jen, Tsai Shih-Feng, Chen Ding-Shinn, Chen Pei-Jer. Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: molecular epidemiology and genome evolution. Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2542–2547. doi: 10.1073/pnas.0307904100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zambon Maria. The inexact science of influenza prediction. Lancet. 2004 Feb 21;363(9409):582–583. doi: 10.1016/S0140-6736(04)15624-9. [DOI] [PubMed] [Google Scholar]
  46. Zhong N. S., Zheng B. J., Li Y. M., Poon, Xie Z. H., Chan K. H., Li P. H., Tan S. Y., Chang Q., Xie J. P. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003 Oct 25;362(9393):1353–1358. doi: 10.1016/S0140-6736(03)14630-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. de Jong J. C., Claas E. C., Osterhaus A. D., Webster R. G., Lim W. L. A pandemic warning? Nature. 1997 Oct 9;389(6651):554–554. doi: 10.1038/39218. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES