Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Aug 29;359(1448):1287-96; discussion 1296-7, 1323-8. doi: 10.1098/rstb.2004.1505

What can we learn by studying enzymes in non-aqueous media?

Peter J Halling 1
PMCID: PMC1693404  PMID: 15306383

Abstract

What is the role of water in enzyme structure and function? One approach to answers should come from studies in which the amount of water present is a variable. In the absence of bulk liquid water, effective monitoring of enzyme action requires an alternative fluid medium through which substrates and products may be transported. The past 20 years have seen quite extensive study of enzyme behaviour when reactants are transferred via a bulk phase that is an organic liquid, a supercritical fluid or a gas. Some lipases, at least, remain highly active with only a few, if any, residual water molecules. Many enzymes seem to require larger amounts of water, but still not a liquid water phase. There are hysteresis effects on both the amount of bound water and the observed catalytic activity. Increasing hydration promotes mobility of the enzyme molecule, as revealed by various techniques, and there are correlations with catalytic activity. There are other plausible roles for hydration, such as opening up proton conduction pathways.

Full Text

The Full Text of this article is available as a PDF (344.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adlercreutz P. On the importance of the support material for enzymatic synthesis in organic media. Support effects at controlled water activity. Eur J Biochem. 1991 Aug 1;199(3):609–614. doi: 10.1111/j.1432-1033.1991.tb16161.x. [DOI] [PubMed] [Google Scholar]
  2. Affleck R., Haynes C. A., Clark D. S. Solvent dielectric effects on protein dynamics. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5167–5170. doi: 10.1073/pnas.89.11.5167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amorim Fernandes João F., Halling Peter J. Operational stability of high initial activity protease catalysts in organic solvents. Biotechnol Prog. 2002 Nov-Dec;18(6):1455–1457. doi: 10.1021/bp020098g. [DOI] [PubMed] [Google Scholar]
  4. Carrea G, Riva S. Properties and Synthetic Applications of Enzymes in Organic Solvents. Angew Chem Int Ed Engl. 2000 Jul 3;39(13):2226–2254. [PubMed] [Google Scholar]
  5. Clark Douglas S. Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water. Philos Trans R Soc Lond B Biol Sci. 2004 Aug 29;359(1448):1299-307; discussion 1307, 1323-8. doi: 10.1098/rstb.2004.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunn Rachel V., Daniel Roy M. The use of gas-phase substrates to study enzyme catalysis at low hydration. Philos Trans R Soc Lond B Biol Sci. 2004 Aug 29;359(1448):1309-20; discussion 1320, 1323-8. doi: 10.1098/rstb.2004.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grant W. D. Life at low water activity. Philos Trans R Soc Lond B Biol Sci. 2004 Aug 29;359(1448):1249–1267. doi: 10.1098/rstb.2004.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griebenow K., Vidal M., Baéz C., Santos A. M., Barletta G. Nativelike enzyme properties are important for optimum activity in neat organic solvents. J Am Chem Soc. 2001 Jun 6;123(22):5380–5381. doi: 10.1021/ja015889d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guo Wei, Mabrouk Patricia Ann. Raman evidence that the lyoprotectant poly(ethylene glycol) does not restore nativity to the heme active site of horseradish peroxidase suspended in organic solvents. Biomacromolecules. 2002 Jul-Aug;3(4):846–849. doi: 10.1021/bm0255286. [DOI] [PubMed] [Google Scholar]
  10. Halling P. J. Biocatalysis in low-water media: understanding effects of reaction conditions. Curr Opin Chem Biol. 2000 Feb;4(1):74–80. doi: 10.1016/s1367-5931(99)00055-1. [DOI] [PubMed] [Google Scholar]
  11. Halling P. J. High-affinity binding of water by proteins is similar in air and in organic solvents. Biochim Biophys Acta. 1990 Sep 3;1040(2):225–228. doi: 10.1016/0167-4838(90)90080-y. [DOI] [PubMed] [Google Scholar]
  12. Halling P. J. Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol. 1994 Mar;16(3):178–206. doi: 10.1016/0141-0229(94)90043-4. [DOI] [PubMed] [Google Scholar]
  13. Ke T., Klibanov A. M. On enzymatic activity in organic solvents as a function of enzyme history. Biotechnol Bioeng. 1998 Mar 20;57(6):746–750. doi: 10.1002/(sici)1097-0290(19980320)57:6<746::aid-bit12>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  14. Klibanov A. M. Improving enzymes by using them in organic solvents. Nature. 2001 Jan 11;409(6817):241–246. doi: 10.1038/35051719. [DOI] [PubMed] [Google Scholar]
  15. Lee C. S., Ru M. T., Haake M., Dordick J. S., Reimer J. A., Clark D. S. Multinuclear NMR study of enzyme hydration in an organic solvent. Biotechnol Bioeng. 1998 Mar 20;57(6):686–693. [PubMed] [Google Scholar]
  16. Lee Moo-Yeal, Dordick Jonathan S. Enzyme activation for nonaqueous media. Curr Opin Biotechnol. 2002 Aug;13(4):376–384. doi: 10.1016/s0958-1669(02)00337-3. [DOI] [PubMed] [Google Scholar]
  17. Luca Sorin, Heise Henrike, Baldus Marc. High-resolution solid-state NMR applied to polypeptides and membrane proteins. Acc Chem Res. 2003 Nov;36(11):858–865. doi: 10.1021/ar020232y. [DOI] [PubMed] [Google Scholar]
  18. McMinn J. H., Sowa M. J., Charnick S. B., Paulaitis M. E. The hydration of proteins in nearly anhydrous organic solvent suspensions. Biopolymers. 1993 Aug;33(8):1213–1224. doi: 10.1002/bip.360330808. [DOI] [PubMed] [Google Scholar]
  19. Partridge J., Dennison P. R., Moore B. D., Halling P. J. Activity and mobility of subtilisin in low water organic media: hydration is more important than solvent dielectric. Biochim Biophys Acta. 1998 Jul 28;1386(1):79–89. doi: 10.1016/s0167-4838(98)00086-7. [DOI] [PubMed] [Google Scholar]
  20. Rand R. P. Probing the role of water in protein conformation and function. Philos Trans R Soc Lond B Biol Sci. 2004 Aug 29;359(1448):1277–1285. doi: 10.1098/rstb.2004.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rupley J. A., Careri G. Protein hydration and function. Adv Protein Chem. 1991;41:37–172. doi: 10.1016/s0065-3233(08)60197-7. [DOI] [PubMed] [Google Scholar]
  22. Soares Cláudio M., Teixeira Vitor H., Baptista António M. Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. Biophys J. 2003 Mar;84(3):1628–1641. doi: 10.1016/S0006-3495(03)74972-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Straathof Adrie J. J., Panke Sven, Schmid Andreas. The production of fine chemicals by biotransformations. Curr Opin Biotechnol. 2002 Dec;13(6):548–556. doi: 10.1016/s0958-1669(02)00360-9. [DOI] [PubMed] [Google Scholar]
  24. Theppakorn Theerapong, Kanasawud Pawinee, Halling Peter J. Activity of immobilized papain dehydrated by n-propanol in low-water media. Biotechnol Lett. 2004 Jan;26(2):133–136. doi: 10.1023/b:bile.0000012891.13904.62. [DOI] [PubMed] [Google Scholar]
  25. Valivety R. H., Halling P. J., Macrae A. R. Rhizomucor miehei lipase remains highly active at water activity below 0.0001. FEBS Lett. 1992 Apr 27;301(3):258–260. doi: 10.1016/0014-5793(92)80252-c. [DOI] [PubMed] [Google Scholar]
  26. Valivety R. H., Halling P. J., Peilow A. D., Macrae A. R. Lipases from different sources vary widely in dependence of catalytic activity on water activity. Biochim Biophys Acta. 1992 Jul 31;1122(2):143–146. doi: 10.1016/0167-4838(92)90316-6. [DOI] [PubMed] [Google Scholar]
  27. Zaks A., Klibanov A. M. The effect of water on enzyme action in organic media. J Biol Chem. 1988 Jun 15;263(17):8017–8021. [PubMed] [Google Scholar]
  28. Zhu G., Huang Q., Zhu Y., Li Y., Chi C., Tang Y. X-Ray study on an artificial mung bean inhibitor complex with bovine beta-trypsin in neat cyclohexane. Biochim Biophys Acta. 2001 Mar 9;1546(1):98–106. doi: 10.1016/s0167-4838(00)00299-5. [DOI] [PubMed] [Google Scholar]
  29. van Erp S. H., Kamenskaya E. O., Khmelnitsky Y. L. The effect of water content and nature of organic solvent on enzyme activity in low-water media. A quantitative description. Eur J Biochem. 1991 Dec 5;202(2):379–384. doi: 10.1111/j.1432-1033.1991.tb16385.x. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES