Full text
PDF![207](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/2d4f5457e484/jbacter00008-0077.png)
![208](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/e4ed3a60dcd3/jbacter00008-0078.png)
![209](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/6f2a5f06cded/jbacter00008-0079.png)
![210](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/54f4b1217c43/jbacter00008-0080.png)
![211](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/84f1befaebfe/jbacter00008-0081.png)
![212](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/c7f6c0818c33/jbacter00008-0082.png)
![213](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/a0ae24971c98/jbacter00008-0083.png)
![214](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/d11b0605edef/jbacter00008-0084.png)
![215](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/7a0172af230b/jbacter00008-0085.png)
![216](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/02b2261b4963/jbacter00008-0086.png)
![217](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/9be1e4c8b0b2/jbacter00008-0087.png)
![218](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/df2d9a5f0661/jbacter00008-0088.png)
![219](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/9decfb7312ac/jbacter00008-0089.png)
![220](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/66be85145ed7/jbacter00008-0090.png)
![221](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfe/169341/29d052e6cac0/jbacter00008-0091.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANFINSEN C. B., STEINBERG D. Studies on the biosynthesis of ovalbumin. J Biol Chem. 1951 Apr;189(2):739–744. [PubMed] [Google Scholar]
- DITTMER K. The structural bases of some amino acid antagonists and their microbiological properties. Ann N Y Acad Sci. 1950 Jul 7;52(8):1274–1301. doi: 10.1111/j.1749-6632.1950.tb54030.x. [DOI] [PubMed] [Google Scholar]
- Freeland J. C., Gale E. F. The amino-acid composition of certain bacteria and yeasts. Biochem J. 1947;41(1):135–138. doi: 10.1042/bj0410135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEIGER E. The role of the time factor in protein synthesis. Science. 1950 Jun 2;111(2892):594–599. doi: 10.1126/science.111.2892.594. [DOI] [PubMed] [Google Scholar]
- Gale E. F. Studies on bacterial amino-acid decarboxylases: 5. The use of specific decarboxylase preparations in the estimation of amino-acids and in protein analysis. Biochem J. 1945;39(1):46–52. doi: 10.1042/bj0390046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLEIN H. P., DOUDOROFF M. The mutation of Pseudomonas putrefaciens to glucose utilization and its enzymatic basis. J Bacteriol. 1950 Jun;59(6):739–750. doi: 10.1128/jb.59.6.739-750.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keilin D., Hartree E. F. The use of glucose oxidase (notatin) for the determination of glucose in biological material and for the study of glucose-producing systems by manometric methods. Biochem J. 1948;42(2):230–238. [PMC free article] [PubMed] [Google Scholar]
- POLLOCK M. R. Penicillinase adaptation in B. cereus; adaptive enzyme formation in the absence of free substrate. Br J Exp Pathol. 1950 Dec;31(6):739–753. [PMC free article] [PubMed] [Google Scholar]
- SLEEPER B. P., TSUCHIDA M., STANIER R. Y. The bacterial oxidation of aromatic compounds; the preparation of enzymatically active dried cells and the influence thereon of prior patterns of adaptation. J Bacteriol. 1950 Jan;59(1):129–133. doi: 10.1128/jb.59.1.129-133.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STANIER R. Y. Enzymatic adaptation in bacteria. Annu Rev Microbiol. 1951;5:35–56. doi: 10.1146/annurev.mi.05.100151.000343. [DOI] [PubMed] [Google Scholar]