Abstract
X-ray fibre-diffraction studies indicate a high degree of stereochemical specificity in interactions between water and the DNA double helix. Evidence for this comes from data that show that the molecular conformations assumed by DNA in fibres are highly reproducible and that the hydration-driven transitions between these conformations are fully reversible. These conformational transitions are induced by varying the relative humidity of the fibre environment and hence its water content. Further evidence for stereochemical specificity comes from the observed dependence of the conformation assumed on the ionic content of the fibre and the nucleotide sequence of the DNA. For some transitions, information on stereochemical pathways has come from real-time X-ray fibre diffraction using synchrotron radiation; information on the location of water with respect to the double helix for a number of DNA conformations has come from neutron fibre diffraction. This structural information from fibre-diffraction studies of DNA is complemented by information from X-ray single-crystal studies of oligonucleotides. If the biochemical processes involving DNA have evolved to exploit the structural features observed in DNA fibres and oligonucleotide single crystals, the challenges in developing alternatives to a water environment can be expected to be very severe.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARNOTT S., WILKINS M. H. FOURIER SYNTHESIS STUDIES OF LITHIUM DNA. 3. HOOGSTEEN MODELS. J Mol Biol. 1965 Feb;11:391–402. doi: 10.1016/s0022-2836(65)80065-1. [DOI] [PubMed] [Google Scholar]
- Arnott S., Chandrasekaran R., Birdsall D. L., Leslie A. G., Ratliff R. L. Left-handed DNA helices. Nature. 1980 Feb 21;283(5749):743–745. doi: 10.1038/283743a0. [DOI] [PubMed] [Google Scholar]
- Arnott S., Chandrasekaran R., Puigjaner L. C., Walker J. K., Hall I. H., Birdsall D. L., Ratliff R. L. Wrinkled DNA. Nucleic Acids Res. 1983 Mar 11;11(5):1457–1474. doi: 10.1093/nar/11.5.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dock-Bregeon A. C., Chevrier B., Podjarny A., Johnson J., de Bear J. S., Gough G. R., Gilham P. T., Moras D. Crystallographic structure of an RNA helix: [U(UA)6A]2. J Mol Biol. 1989 Oct 5;209(3):459–474. doi: 10.1016/0022-2836(89)90010-7. [DOI] [PubMed] [Google Scholar]
- FRANKLIN R. E., GOSLING R. G. Molecular configuration in sodium thymonucleate. Nature. 1953 Apr 25;171(4356):740–741. doi: 10.1038/171740a0. [DOI] [PubMed] [Google Scholar]
- FULLER W., WILKINS M. H., WILSON H. R., HAMILTON L. D. THE MOLECULAR CONFIGURATION OF DEOXYRIBONUCLEIC ACID. IV. X-RAY DIFFRACTION STUDY OF THE A FORM. J Mol Biol. 1965 May;12:60–76. doi: 10.1016/s0022-2836(65)80282-0. [DOI] [PubMed] [Google Scholar]
- Forsyth V. T., Greenall R. J., Hussain R., Mahendrasingam A., Nave C., Pigram W. J., Fuller W. X-ray high-angle fibre diffraction studies of nucleic acid structure using the Daresbury Synchrotron Radiation Source. Biochem Soc Trans. 1986 Jun;14(3):553–557. doi: 10.1042/bst0140553. [DOI] [PubMed] [Google Scholar]
- Forsyth V. T., Mahendrasingam A., Pigram W. J., Greenall R. J., Bellamy K., Fuller W., Mason S. A. Neutron fibre diffraction study of DNA hydration. Int J Biol Macromol. 1989 Aug;11(4):236–240. doi: 10.1016/0141-8130(89)90075-5. [DOI] [PubMed] [Google Scholar]
- Langan P., Forsyth V. T., Mahendrasingam A., Pigram W. J., Mason S. A., Fuller W. A high angle neutron fibre diffraction study of the hydration of the A conformation of the DNA double helix. J Biomol Struct Dyn. 1992 Dec;10(3):489–503. doi: 10.1080/07391102.1992.10508664. [DOI] [PubMed] [Google Scholar]
- MARVIN D. A., SPENCER M., WILKINS M. H., HAMILTON L. D. The molecular configuration of deoxyribonucleic acid. III. X-ray diffraction study of the C form of the lithium salt. J Mol Biol. 1961 Oct;3:547–565. doi: 10.1016/s0022-2836(61)80021-1. [DOI] [PubMed] [Google Scholar]
- Mahendrasingam A., Forsyth V. T., Hussain R., Greenall R. J., Pigram W. J., Fuller W. Time-resolved X-ray diffraction studies of the B in equilibrium D structural transition in the DNA double helix. Science. 1986 Jul 11;233(4760):195–197. doi: 10.1126/science.3726529. [DOI] [PubMed] [Google Scholar]
- Marvin D. A., Wilkins M. H., Hamilton L. D. Application of Fourier synthesis technique to low-resolution fibre diffraction data: preliminary study of deoxyribonucleic acid. Acta Crystallogr. 1966 May 10;20(5):663–669. doi: 10.1107/s0365110x66001580. [DOI] [PubMed] [Google Scholar]
- Pope L. H., Shotton M. W., Forsyth T., Hughes D. J., Denny R. C., Fuller W. Structural polymorphism in a tubercidin analogue of the DNA double helix. Biophys Chem. 1998 Feb 16;70(2):161–172. doi: 10.1016/s0301-4622(97)00132-4. [DOI] [PubMed] [Google Scholar]
- Richmond Timothy J., Davey Curt A. The structure of DNA in the nucleosome core. Nature. 2003 May 8;423(6936):145–150. doi: 10.1038/nature01595. [DOI] [PubMed] [Google Scholar]
- Shotton M. W., Pope L. H., Forsyth T., Langan P., Denny R. C., Giesen U., Dauvergne M. T., Fuller W. A high-angle neutron fibre diffraction study of the hydration of deuterated A-DNA. Biophys Chem. 1997 Nov;69(1):85–96. doi: 10.1016/s0301-4622(97)00090-2. [DOI] [PubMed] [Google Scholar]
- WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
- WILKINS M. H. F., STOKES A. R., WILSON H. R. Molecular structure of deoxypentose nucleic acids. Nature. 1953 Apr 25;171(4356):738–740. doi: 10.1038/171738a0. [DOI] [PubMed] [Google Scholar]
- Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]