Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Aug 29;359(1448):1309-20; discussion 1320, 1323-8. doi: 10.1098/rstb.2004.1494

The use of gas-phase substrates to study enzyme catalysis at low hydration.

Rachel V Dunn 1, Roy M Daniel 1
PMCID: PMC1693412  PMID: 15306385

Abstract

Although there are varying estimates as to the degree of enzyme hydration required for activity, a threshold value of ca. 0.2 g of water per gram of protein has been widely accepted. The evidence upon which this is based is reviewed here. In particular, results from the use of gas-phase substrates are discussed. Results using solid-phase enzyme-substrate mixtures are not altogether in accord with those obtained using gas-phase substrates. The use of gaseous substrates and products provides an experimental system in which the hydration of the enzyme can be easily controlled, but which is not limited by diffusion. All the results show that increasing hydration enhances activity. The results using gas-phase substrates do not support the existence of a critical hydration value below which enzymatic activity is absent, and suggest that enzyme activity is possible at much lower hydrations than previously thought; they do not support the notion that significant hydration of the surface polar groups is required for activity. However, the marked improvement of activity as hydration is increased suggests that water does play a role, perhaps in optimizing the structure or facilitating the flexibility required for maximal activity.

Full Text

The Full Text of this article is available as a PDF (289.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babor Mariana, Sobolev Vladimir, Edelman Marvin. Conserved positions for ribose recognition: importance of water bridging interactions among ATP, ADP and FAD-protein complexes. J Mol Biol. 2002 Oct 25;323(3):523–532. doi: 10.1016/s0022-2836(02)00975-0. [DOI] [PubMed] [Google Scholar]
  2. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  3. Barzana E., Klibanov A. M., Karel M. Enzyme-catalyzed, gas-phase reactions. Appl Biochem Biotechnol. 1987 Jun;15(1):25–34. doi: 10.1007/BF02798504. [DOI] [PubMed] [Google Scholar]
  4. Bone S. Dielectric and gravimetric studies of water binding to lysozyme. Phys Med Biol. 1996 Aug;41(8):1265–1275. doi: 10.1088/0031-9155/41/8/002. [DOI] [PubMed] [Google Scholar]
  5. Bousquet-Dubouch M. P., Graber M., Sousa N., Lamare S., Legoy M. D. Alcoholysis catalyzed by Candida antarctica lipase B in a gas/solid system obeys a Ping Pong Bi Bi mechanism with competitive inhibition by the alcohol substrate and water. Biochim Biophys Acta. 2001 Nov 26;1550(1):90–99. doi: 10.1016/s0167-4838(01)00273-4. [DOI] [PubMed] [Google Scholar]
  6. Cameron Paula A., Davison Brian H., Frymier Paul D., Barton John W. Direct transesterification of gases by "dry" immobilized lipase. Biotechnol Bioeng. 2002 May 5;78(3):251–256. doi: 10.1002/bit.10150. [DOI] [PubMed] [Google Scholar]
  7. Careri G., Giansanti A., Gratton E. Lysozyme film hydration events: an ir and gravimetric study. Biopolymers. 1979 May;18(5):1187–1203. doi: 10.1002/bip.1979.360180512. [DOI] [PubMed] [Google Scholar]
  8. Careri G., Gratton E., Yang P. H., Rupley J. A. Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature. 1980 Apr 10;284(5756):572–573. doi: 10.1038/284572a0. [DOI] [PubMed] [Google Scholar]
  9. Dravis B. C., LeJeune K. E., Hetro A. D., Russell A. J. Enzymatic dehalogenation of gas phase substrates with haloalkane dehalogenase. Biotechnol Bioeng. 2000 Aug 5;69(3):235–241. [PubMed] [Google Scholar]
  10. Finney J. L. Overview lecture. Hydration processes in biological and macromolecular systems. Faraday Discuss. 1996;(103):1–18. doi: 10.1039/fd9960300001. [DOI] [PubMed] [Google Scholar]
  11. Graber Marianne, Bousquet-Dubouch Marie Pierre, Sousa Nadine, Lamare Sylvain, Legoy Marie Dominique. Water plays a different role on activation thermodynamic parameters of alcoholysis reaction catalyzed by lipase in gaseous and organic media. Biochim Biophys Acta. 2003 Jan 31;1645(1):56–62. doi: 10.1016/s1570-9639(02)00499-5. [DOI] [PubMed] [Google Scholar]
  12. Khurgin Iu I., Medvedeva P. V., Rosliakov V. Ia. Izuchenie tverdofazykh fermentativnykh reaktsii. II. Khimotripsinovyi gidroliz n-nitroanilida N-suktsinil-L-fenilalanina. Biofizika. 1977 Nov-Dec;22(6):1010–1014. [PubMed] [Google Scholar]
  13. Lamare S., Legoy M. D. Biocatalysis in the gas phase. Trends Biotechnol. 1993 Oct;11(10):413–418. doi: 10.1016/0167-7799(93)90004-S. [DOI] [PubMed] [Google Scholar]
  14. Meyer E. Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. Protein Sci. 1992 Dec;1(12):1543–1562. doi: 10.1002/pro.5560011203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakasako M., Odaka M., Yohda M., Dohmae N., Takio K., Kamiya N., Endo I. Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme. Biochemistry. 1999 Aug 3;38(31):9887–9898. doi: 10.1021/bi982753s. [DOI] [PubMed] [Google Scholar]
  16. Pocker Y. Water in enzyme reactions: biophysical aspects of hydration-dehydration processes. Cell Mol Life Sci. 2000 Jul;57(7):1008–1017. doi: 10.1007/PL00000741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rupley J. A., Careri G. Protein hydration and function. Adv Protein Chem. 1991;41:37–172. doi: 10.1016/s0065-3233(08)60197-7. [DOI] [PubMed] [Google Scholar]
  18. Schinkel J. E., Downer N. W., Rupley J. A. Hydrogen exchange of lysozyme powders. Hydration dependence of internal motions. Biochemistry. 1985 Jan 15;24(2):352–366. doi: 10.1021/bi00323a018. [DOI] [PubMed] [Google Scholar]
  19. Shamblin S. L., Hancock B. C., Zografi G. Water vapor sorption by peptides, proteins and their formulations. Eur J Pharm Biopharm. 1998 May;45(3):239–247. doi: 10.1016/s0939-6411(98)00006-x. [DOI] [PubMed] [Google Scholar]
  20. Skujins J. J., McLaren A. D. Enzyme reaction rates at limited water activities. Science. 1967 Dec 22;158(3808):1569–1570. doi: 10.1126/science.158.3808.1569. [DOI] [PubMed] [Google Scholar]
  21. Smith Allan L., Shirazi Hamid M., Mulligan S. Rose. Water sorption isotherms and enthalpies of water sorption by lysozyme using the quartz crystal microbalance/heat conduction calorimeter. Biochim Biophys Acta. 2002 Jan 31;1594(1):150–159. doi: 10.1016/s0167-4838(01)00298-9. [DOI] [PubMed] [Google Scholar]
  22. Stevens E., Stevens L. The effect of restricted hydration on the rate of reaction of glucose 6-phosphate dehydrogenase, phosphoglucose isomerase, hexokinase and fumarase. Biochem J. 1979 Apr 1;179(1):161–167. doi: 10.1042/bj1790161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Valivety R. H., Halling P. J., Macrae A. R. Rhizomucor miehei lipase remains highly active at water activity below 0.0001. FEBS Lett. 1992 Apr 27;301(3):258–260. doi: 10.1016/0014-5793(92)80252-c. [DOI] [PubMed] [Google Scholar]
  24. Williams M. A., Goodfellow J. M., Thornton J. M. Buried waters and internal cavities in monomeric proteins. Protein Sci. 1994 Aug;3(8):1224–1235. doi: 10.1002/pro.5560030808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zaks A., Klibanov A. M. Enzymatic catalysis in nonaqueous solvents. J Biol Chem. 1988 Mar 5;263(7):3194–3201. [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES