Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Aug 29;359(1448):1145-63; discussion 1163-5, 1323-8. doi: 10.1098/rstb.2004.1495

Water? What's so special about it?

John L Finney 1
PMCID: PMC1693413  PMID: 15306373

Abstract

What is so special about water? Why does it have the properties it has, and how might these reasons be relevant to its apparent biological importance? By exploring the structure and dynamics of water, from the isolated molecule and its interactions, through its many crystalline phases and to its so-called anomalous liquid phase, some of its apparently unusual behaviour is rationalized. The way in which it interacts with some relatively simple interfaces is also discussed. As a result of this exploration, a checklist of possible molecular-level reasons for its biological importance is devised.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball Philip. Chemical physics: How to keep dry in water. Nature. 2003 May 1;423(6935):25–26. doi: 10.1038/423025a. [DOI] [PubMed] [Google Scholar]
  2. Denisov V. P., Halle B. Protein hydration dynamics in aqueous solution. Faraday Discuss. 1996;(103):227–244. doi: 10.1039/fd9960300227. [DOI] [PubMed] [Google Scholar]
  3. Errington J. R., Debenedetti P. G. Relationship between structural order and the anomalies of liquid water. Nature. 2001 Jan 18;409(6818):318–321. doi: 10.1038/35053024. [DOI] [PubMed] [Google Scholar]
  4. Finney J. L., Bowron D. T., Daniel R. M., Timmins P. A., Roberts M. A. Molecular and mesoscale structures in hydrophobically driven aqueous solutions. Biophys Chem. 2003 Sep;105(2-3):391–409. doi: 10.1016/s0301-4622(03)00104-2. [DOI] [PubMed] [Google Scholar]
  5. Israelachvili J., Pashley R. The hydrophobic interaction is long range, decaying exponentially with distance. Nature. 1982 Nov 25;300(5890):341–342. doi: 10.1038/300341a0. [DOI] [PubMed] [Google Scholar]
  6. Raviv U., Laurat P., Klein J. Fluidity of water confined to subnanometre films. Nature. 2001 Sep 6;413(6851):51–54. doi: 10.1038/35092523. [DOI] [PubMed] [Google Scholar]
  7. Savage H. Water structure in vitamin B12 coenzyme crystals. II. Structural characteristics of the solvent networks. Biophys J. 1986 Nov;50(5):967–980. doi: 10.1016/S0006-3495(86)83537-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Soper AK, Finney JL. Hydration of methanol in aqueous solution. Phys Rev Lett. 1993 Dec 27;71(26):4346–4349. doi: 10.1103/PhysRevLett.71.4346. [DOI] [PubMed] [Google Scholar]
  9. Teixeira J, Bellissent-Funel M, Chen SH, Dianoux AJ. Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Phys Rev A Gen Phys. 1985 Mar;31(3):1913–1917. doi: 10.1103/physreva.31.1913. [DOI] [PubMed] [Google Scholar]
  10. Tuckerman ME, Marx D, Klein ML, Parrinello M. On the Quantum Nature of the Shared Proton in Hydrogen Bonds. Science. 1997 Feb 7;275(5301):817–820. doi: 10.1126/science.275.5301.817. [DOI] [PubMed] [Google Scholar]
  11. Tyrrell J. W., Attard P. Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett. 2001 Oct 8;87(17):176104–176104. doi: 10.1103/PhysRevLett.87.176104. [DOI] [PubMed] [Google Scholar]
  12. Wernet Ph, Nordlund D., Bergmann U., Cavalleri M., Odelius M., Ogasawara H., Näslund L. A., Hirsch T. K., Ojamäe L., Glatzel P. The structure of the first coordination shell in liquid water. Science. 2004 Apr 1;304(5673):995–999. doi: 10.1126/science.1096205. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES