Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Oct 29;359(1450):1495–1508. doi: 10.1098/rstb.2004.1537

Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae.

J E Richardson 1, L W Chatrou 1, J B Mols 1, R H J Erkens 1, M D Pirie 1
PMCID: PMC1693429  PMID: 15519968

Abstract

Annonaceae are a pantropically distributed family found predominantly in rainforests, so they are megathermal taxa, whereas Rhamnaceae are a cosmopolitan family that tend to be found in xeric regions and may be classified as mesothermal. Phylogenetic analyses of these families are presented based on rbcL and trnL-F plastid DNA sequences. Likelihood ratio tests revealed rate heterogeneity in both phylogenetic trees and they were therefore made ultrametric using non-parametric rate smoothing and penalized likelihood. Divergence times were then estimated using fossil calibration points. The historical biogeography of these families that are species rich in different biomes is discussed and compared with other published reconstructions. Rhamnaceae and most lineages within Annonaceae are too young to have had their distribution patterns influenced by break-up of previously connected Gondwanan landmasses. Contrasts in the degree of geographical structure between these two families may be explained by differences in age and dispersal capability. In both groups, long-distance dispersal appears to have played a more significant role in establishing modern patterns than had previously been assumed. Both families also contain examples of recent diversification of species-rich lineages. An understanding of the processes responsible for shaping the distribution patterns of these families has contributed to our understanding of the historical assembly of the biomes that they occupy.

Full Text

The Full Text of this article is available as a PDF (265.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basinger J. F., Dilcher D. L. Ancient bisexual flowers. Science. 1984 May 4;224(4648):511–513. doi: 10.1126/science.224.4648.511. [DOI] [PubMed] [Google Scholar]
  2. Bermingham E., Martin A. P. Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol. 1998 Apr;7(4):499–517. doi: 10.1046/j.1365-294x.1998.00358.x. [DOI] [PubMed] [Google Scholar]
  3. Burnham Robyn J., Johnson Kirk R. South American palaeobotany and the origins of neotropical rainforests. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1595–1610. doi: 10.1098/rstb.2004.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Calsbeek Ryan, Thompson John N., Richardson James E. Patterns of molecular evolution and diversification in a biodiversity hotspot: the California Floristic Province. Mol Ecol. 2003 Apr;12(4):1021–1029. doi: 10.1046/j.1365-294x.2003.01794.x. [DOI] [PubMed] [Google Scholar]
  5. Clark C. J., Poulsen J. R., Connor E. F., Parker V. T. Fruiting trees as dispersal foci in a semi-deciduous tropical forest. Oecologia. 2004 Jan 27;139(1):66–75. doi: 10.1007/s00442-003-1483-1. [DOI] [PubMed] [Google Scholar]
  6. Crisp Mike, Cook Lyn, Steane Dorothy. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1551–1571. doi: 10.1098/rstb.2004.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis Charles C., Bell Charles D., Fritsch Peter W., Mathews Sarah. Phylogeny of Acridocarpus-Brachylophon (Malpighiaceae): implications for tertiary tropical floras and Afroasian biogeography. Evolution. 2002 Dec;56(12):2395–2405. doi: 10.1111/j.0014-3820.2002.tb00165.x. [DOI] [PubMed] [Google Scholar]
  8. Davis Charles C., Bell Charles D., Mathews Sarah, Donoghue Michael J. Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci U S A. 2002 Apr 30;99(10):6833–6837. doi: 10.1073/pnas.102175899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dick Christopher W., Abdul-Salim Kobinah, Bermingham Eldredge. Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. Am Nat. 2003 Nov 4;162(6):691–703. doi: 10.1086/379795. [DOI] [PubMed] [Google Scholar]
  10. Fritsch P. W. Phylogeny and biogeography of the flowering plant genus Styrax (Styracaceae) based on chloroplast DNA restriction sites and DNA sequences of the internal transcribed spacer region. Mol Phylogenet Evol. 2001 Jun;19(3):387–408. doi: 10.1006/mpev.2001.0933. [DOI] [PubMed] [Google Scholar]
  11. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  12. Lavin Matt, Schrire Brian P., Lewis Gwilym, Pennington R. Toby, Delgado-Salinas Alfonso, Thulin Mats, Hughes Colin E., Matos Angela Beyra, Wojciechowski Martin F. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1509–1522. doi: 10.1098/rstb.2004.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Linder H. P., Hardy C. R. Evolution of the species-rich Cape flora. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1623–1632. doi: 10.1098/rstb.2004.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Magallón S., Sanderson M. J. Absolute diversification rates in angiosperm clades. Evolution. 2001 Sep;55(9):1762–1780. doi: 10.1111/j.0014-3820.2001.tb00826.x. [DOI] [PubMed] [Google Scholar]
  15. Near Thomas J., Sanderson Michael J. Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1477–1483. doi: 10.1098/rstb.2004.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pennington R. Toby, Dick Christopher W. The role of immigrants in the assembly of the South American rainforest tree flora. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1611–1622. doi: 10.1098/rstb.2004.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  18. Renner S. S., Clausing G., Meyer K. Historical biogeography of Melastomataceae: the roles of Tertiary migration and long-distance dispersal. Am J Bot. 2001 Jul;88(7):1290–1300. [PubMed] [Google Scholar]
  19. Renner Susanne S. Multiple Miocene Melastomataceae dispersal between Madagascar, Africa and India. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1485–1494. doi: 10.1098/rstb.2004.1530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Richardson J. E., Fay M. F., Cronk Q. C., Bowman D., Chase M. W. A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Am J Bot. 2000 Sep;87(9):1309–1324. [PubMed] [Google Scholar]
  21. Richardson J. E., Pennington R. T., Pennington T. D., Hollingsworth P. M. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science. 2001 Sep 21;293(5538):2242–2245. doi: 10.1126/science.1061421. [DOI] [PubMed] [Google Scholar]
  22. Richardson J. E., Weitz F. M., Fay M. F., Cronk Q. C., Linder H. P., Reeves G., Chase M. W. Rapid and recent origin of species richness in the Cape flora of South Africa. Nature. 2001 Jul 12;412(6843):181–183. doi: 10.1038/35084067. [DOI] [PubMed] [Google Scholar]
  23. Sanderson Michael J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol. 2002 Jan;19(1):101–109. doi: 10.1093/oxfordjournals.molbev.a003974. [DOI] [PubMed] [Google Scholar]
  24. Siesser W. G. Late Miocene Origin of the Benguela Upswelling System off Northern Namibia. Science. 1980 Apr 18;208(4441):283–285. doi: 10.1126/science.208.4441.283. [DOI] [PubMed] [Google Scholar]
  25. Wikström N., Savolainen V., Chase M. W. Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci. 2001 Nov 7;268(1482):2211–2220. doi: 10.1098/rspb.2001.1782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zachos J., Pagani M., Sloan L., Thomas E., Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001 Apr 27;292(5517):686–693. doi: 10.1126/science.1059412. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES