Abstract
Penalized likelihood estimated ages of both densely sampled intracontinental and sparsely sampled transcontinental crown clades in the legume family show a mostly Quaternary to Neogene age distribution. The mode ages of the intracontinental crown clades range from 4-6 Myr ago, whereas those of the transcontinental crown clades range from 8-16 Myr ago. Both of these young age estimates are detected despite methodological approaches that bias results toward older ages. Hypotheses that resort to vicariance or continental history to explain continental disjunct distributions are dismissed because they require mostly Palaeogene and older tectonic events. An alternative explanation centring on dispersal that may well explain the geographical as well as the ecological phylogenetic structure of legume phylogenies is Hubbell's unified neutral theory of biodiversity and biogeography. This is the only dispersalist theory that encompasses evolutionary time and makes predictions about phylogenetic structure.
Full Text
The Full Text of this article is available as a PDF (460.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey C. Donovan, Carr Timothy G., Harris Stephen A., Hughes Colin E. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol. 2003 Dec;29(3):435–455. doi: 10.1016/j.ympev.2003.08.021. [DOI] [PubMed] [Google Scholar]
- Baldwin B. G., Sanderson M. J. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9402–9406. doi: 10.1073/pnas.95.16.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dick Christopher W., Abdul-Salim Kobinah, Bermingham Eldredge. Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. Am Nat. 2003 Nov 4;162(6):691–703. doi: 10.1086/379795. [DOI] [PubMed] [Google Scholar]
- Engel S. R., Hogan K. M., Taylor J. F., Davis S. K. Molecular systematics and paleobiogeography of the South American sigmodontine rodents. Mol Biol Evol. 1998 Jan;15(1):35–49. doi: 10.1093/oxfordjournals.molbev.a025845. [DOI] [PubMed] [Google Scholar]
- Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
- Huelsenbeck J. P., Ronquist F., Nielsen R., Bollback J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science. 2001 Dec 14;294(5550):2310–2314. doi: 10.1126/science.1065889. [DOI] [PubMed] [Google Scholar]
- Irwin Darren E. Phylogeographic breaks without geographic barriers to gene flow. Evolution. 2002 Dec;56(12):2383–2394. doi: 10.1111/j.0014-3820.2002.tb00164.x. [DOI] [PubMed] [Google Scholar]
- Johnson Jerald B., Omland Kristian S. Model selection in ecology and evolution. Trends Ecol Evol. 2004 Feb;19(2):101–108. doi: 10.1016/j.tree.2003.10.013. [DOI] [PubMed] [Google Scholar]
- Langley C. H., Fitch W. M. An examination of the constancy of the rate of molecular evolution. J Mol Evol. 1974;3(3):161–177. doi: 10.1007/BF01797451. [DOI] [PubMed] [Google Scholar]
- Lavin M., Pennington R. T., Klitgaard B. B., Sprent J. I., de Lima H. C., Gasson P. E. The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am J Bot. 2001 Mar;88(3):503–533. [PubMed] [Google Scholar]
- Losos J. B., Schluter D. Analysis of an evolutionary species-area relationship. Nature. 2000 Dec 14;408(6814):847–850. doi: 10.1038/35048558. [DOI] [PubMed] [Google Scholar]
- Pennington R. Toby, Lavin Matt, Prado Darién E., Pendry Colin A., Pell Susan K., Butterworth Charles A. Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both tertiary and quaternary diversification. Philos Trans R Soc Lond B Biol Sci. 2004 Mar 29;359(1443):515–537. doi: 10.1098/rstb.2003.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Richardson J. E., Pennington R. T., Pennington T. D., Hollingsworth P. M. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science. 2001 Sep 21;293(5538):2242–2245. doi: 10.1126/science.1061421. [DOI] [PubMed] [Google Scholar]
- Sanderson Michael J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol. 2002 Jan;19(1):101–109. doi: 10.1093/oxfordjournals.molbev.a003974. [DOI] [PubMed] [Google Scholar]
- Sato A., Tichy H., O'hUigin C., Grant P. R., Grant B. R., Klein J. On the origin of Darwin's finches. Mol Biol Evol. 2001 Mar;18(3):299–311. doi: 10.1093/oxfordjournals.molbev.a003806. [DOI] [PubMed] [Google Scholar]
- Wagstaff S. J., Heenan P. B., Sanderson M. J. Classification, origins, and patterns of diversification in New ZealandCarmichaelinae (Fabaceae). Am J Bot. 1999 Sep;86(9):1346–1356. [PubMed] [Google Scholar]
- Webb CO. Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. Am Nat. 2000 Aug;156(2):145–155. doi: 10.1086/303378. [DOI] [PubMed] [Google Scholar]
- Yoder Anne D., Burns Melissa M., Zehr Sarah, Delefosse Thomas, Veron Geraldine, Goodman Steven M., Flynn John J. Single origin of Malagasy Carnivora from an African ancestor. Nature. 2003 Feb 13;421(6924):734–737. doi: 10.1038/nature01303. [DOI] [PubMed] [Google Scholar]