Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Oct 29;359(1450):1595–1610. doi: 10.1098/rstb.2004.1531

South American palaeobotany and the origins of neotropical rainforests.

Robyn J Burnham 1, Kirk R Johnson 1
PMCID: PMC1693437  PMID: 15519975

Abstract

Extant neotropical rainforest biomes are characterized by a high diversity and abundance of angiosperm trees and vines, high proportions of entire-margined leaves, high proportions of large leaves (larger than 4500 mm2), high abundance of drip tips and a suite of characteristic dominant families: Sapotaceae, Lauraceae, Leguminosae (Fabaceae), Melastomataceae and Palmae (Arecaceae). Our aim is to define parameters of extant rainforests that will allow their recognition in the fossil record of South America and to evaluate all known South American plant fossil assemblages for first evidence and continued presence of those parameters. We ask when did these critical rainforest characters arise? When did vegetative parameters reach the level of abundance that we see in neotropical forests? Also, when do specific lineages become common in neotropical forests? Our review indicates that evidence of neotropical rainforest is exceedingly rare and equivocal before the Palaeocene. Even in the Palaeocene, the only evidence for tropical rainforest in South America is the appearance of moderately high pollen diversity. By contrast, North American sites provide evidence that rainforest leaf physiognomy was established early in the Palaeocene. By the Eocene in South America, several lines of evidence suggest that neotropical rainforests were diverse, physiognomically recognizable as rainforest and taxonomically allied to modern neotropical rainforests. A mismatch of evidence regarding the age of origin between sites of palaeobotanical high diversity and sites of predicted tropical climates should be reconciled with intensified collecting efforts in South America. We identify several lines of promising research that will help to coalesce previously disparate approaches to the origin, longevity and maintenance of high diversity floras of South America.

Full Text

The Full Text of this article is available as a PDF (273.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey I. W., Sinnott E. W. A BOTANICAL INDEX OF CRETACEOUS AND TERTIARY CLIMATES. Science. 1915 Jun 4;41(1066):831–834. doi: 10.1126/science.41.1066.831. [DOI] [PubMed] [Google Scholar]
  2. Burnham R. J., Pitman N. C., Johnson K. R., Wilf P. Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. Am J Bot. 2001 Jun;88(6):1096–1102. [PubMed] [Google Scholar]
  3. Condit Richard, Pitman Nigel, Leigh Egbert G., Jr, Chave Jérôme, Terborgh John, Foster Robin B., Núez Percy, Aguilar Salomón, Valencia Renato, Villa Gorky. Beta-diversity in tropical forest trees. Science. 2002 Jan 25;295(5555):666–669. doi: 10.1126/science.1066854. [DOI] [PubMed] [Google Scholar]
  4. Davis Charles C., Bell Charles D., Mathews Sarah, Donoghue Michael J. Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci U S A. 2002 Apr 30;99(10):6833–6837. doi: 10.1073/pnas.102175899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jacobs Bonnie F. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1573–1583. doi: 10.1098/rstb.2004.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Johnson Kirk R., Ellis Beth. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary. Science. 2002 Jun 28;296(5577):2379–2383. doi: 10.1126/science.1072102. [DOI] [PubMed] [Google Scholar]
  7. Krings M., Taylor T. N., Taylor E. L., Axsmith B. J., Kerp H. Cuticles of Mariopteris occidentalis White nov. emend. from the Middle Pennsylvanian of Oklahoma (USA), and a new type of climber hook for mariopteroid pteridosperms. Rev Palaeobot Palynol. 2001 Apr;114(3-4):209–222. doi: 10.1016/s0034-6667(00)00077-4. [DOI] [PubMed] [Google Scholar]
  8. Pennington R. Toby, Dick Christopher W. The role of immigrants in the assembly of the South American rainforest tree flora. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1611–1622. doi: 10.1098/rstb.2004.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nunez PV, Vasquez RM, Laurance SG, Ferreira LV, Stern M, Brown S. Changes in the carbon balance of tropical forests: evidence from long-term plots . Science. 1998 Oct 16;282(5388):439–442. doi: 10.1126/science.282.5388.439. [DOI] [PubMed] [Google Scholar]
  10. Plana Vanessa. Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1585–1594. doi: 10.1098/rstb.2004.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Richardson J. E., Chatrou L. W., Mols J. B., Erkens R. H. J., Pirie M. D. Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1495–1508. doi: 10.1098/rstb.2004.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rydin Catarina, Mohr Barbara, Friis Else Marie. Cratonia cotyledon gen. et sp. nov: a unique Cretaceous seedling related to Welwitschia. Proc Biol Sci. 2003 Aug 7;270 (Suppl 1):S29–S32. doi: 10.1098/rsbl.2003.0044. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES