Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Oct 29;359(1450):1551–1571. doi: 10.1098/rstb.2004.1528

Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?

Mike Crisp 1, Lyn Cook 1, Dorothy Steane 1
PMCID: PMC1693438  PMID: 15519972

Abstract

The Australian fossil record shows that from ca. 25 Myr ago, the aseasonal-wet biome (rainforest and wet heath) gave way to the unique Australian sclerophyll biomes dominated by eucalypts, acacias and casuarinas. This transition coincided with tectonic isolation of Australia, leading to cooler, drier, more seasonal climates. From 3 Myr ago, aridification caused rapid opening of the central Australian arid zone. Molecular phylogenies with dated nodes have provided new perspectives on how these events could have affected the evolution of the Australian flora. During the Mid-Cenozoic (25-10 Myr ago) period of climatic change, there were rapid radiations in sclerophyll taxa, such as Banksia, eucalypts, pea-flowered legumes and Allocasuarina. At the same time, taxa restricted to the aseasonal-wet biome (Nothofagus, Podocarpaceae and Araucariaceae) did not radiate or were depleted by extinction. During the Pliocene aridification, two Eremean biome taxa (Lepidium and Chenopodiaceae) radiated rapidly after dispersing into Australia from overseas. It is clear that the biomes have different histories. Lineages in the aseasonal-wet biome are species poor, with sister taxa that are species rich, either outside Australia or in the sclerophyll biomes. In conjunction with the fossil record, this indicates depletion of the Australian aseasonal-wet biome from the Mid-Cenozoic. In the sclerophyll biomes, there have been multiple exchanges between the southwest and southeast, rather than single large endemic radiations after a vicariance event. There is need for rigorous molecular phylogenetic studies so that additional questions can be addressed, such as how interactions between biomes may have driven the speciation process during radiations. New studies should include the hitherto neglected monsoonal tropics.

Full Text

The Full Text of this article is available as a PDF (324.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baum D. A., Small R. L., Wendel J. F. Biogeography and floral evolution of baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. Syst Biol. 1998 Jun;47(2):181–207. doi: 10.1080/106351598260879. [DOI] [PubMed] [Google Scholar]
  2. Edwards K. J., Gadek P. A. Evolution and biogeography of Alectryon (Sapindaceae). Mol Phylogenet Evol. 2001 Jul;20(1):14–26. doi: 10.1006/mpev.2001.0952. [DOI] [PubMed] [Google Scholar]
  3. Ericson Per G. P., Christidis Les, Cooper Alan, Irestedt Martin, Jackson Jennifer, Johansson Ulf S., Norman Janette A. A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc Biol Sci. 2002 Feb 7;269(1488):235–241. doi: 10.1098/rspb.2001.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gadek P. A., Alpers D. L., Heslewood M. M., Quinn C. J. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. Am J Bot. 2000 Jul;87(7):1044–1057. [PubMed] [Google Scholar]
  5. Hill Robert S. Origins of the southeastern Australian vegetation. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1537–1549. doi: 10.1098/rstb.2004.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jordan GJ, Hill RS. The Phylogenetic Affinities of Nothofagus (Nothofagaceae) Leaf Fossils based on Combined Molecular and Morphological Data. Int J Plant Sci. 1999 Nov;160(6):1177–1188. doi: 10.1086/314207. [DOI] [PubMed] [Google Scholar]
  7. Jousselin Emmanuelle, Rasplus Jean-Yves, Kjellberg Finn. Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution. 2003 Jun;57(6):1255–1269. doi: 10.1554/02-445. [DOI] [PubMed] [Google Scholar]
  8. Linder H. P., Hardy C. R. Evolution of the species-rich Cape flora. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1623–1632. doi: 10.1098/rstb.2004.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Linder H. Peter, Eldenäs Pia, Briggs Barbara G. Contrasting patterns of radiation in African and Australian Restionaceae. Evolution. 2003 Dec;57(12):2688–2702. doi: 10.1111/j.0014-3820.2003.tb01513.x. [DOI] [PubMed] [Google Scholar]
  10. Liu Qing, Brubaker Curt L., Green Allan G., Marshall Don R., Sharp Peter J., Singh Surinder P. Evolution of the FAD2-1 fatty acid desaturase 5' UTR intron and the molecular systematics of Gossypium (Malvaceae). Am J Bot. 2001 Jan;88(1):92–102. [PubMed] [Google Scholar]
  11. Lowrey T. K., Quinn C. J., Taylor R. K., Chan R., Kimball R. T., De Nardi J. C. Molecular and morphological reassessment of relationships within the Vittadinia group of Astereae (Asteraceae). Am J Bot. 2001 Jul;88(7):1279–1289. [PubMed] [Google Scholar]
  12. doi: 10.1098/rstb.1998.0213. [DOI] [PMC free article] [Google Scholar]
  13. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  14. Pybus O. G., Harvey P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc Biol Sci. 2000 Nov 22;267(1459):2267–2272. doi: 10.1098/rspb.2000.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richardson J. E., Fay M. F., Cronk Q. C., Bowman D., Chase M. W. A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Am J Bot. 2000 Sep;87(9):1309–1324. [PubMed] [Google Scholar]
  16. Ronquist Fredrik, Huelsenbeck John P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003 Aug 12;19(12):1572–1574. doi: 10.1093/bioinformatics/btg180. [DOI] [PubMed] [Google Scholar]
  17. Sanderson Michael J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol. 2002 Jan;19(1):101–109. doi: 10.1093/oxfordjournals.molbev.a003974. [DOI] [PubMed] [Google Scholar]
  18. Sanderson Michael J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics. 2003 Jan 22;19(2):301–302. doi: 10.1093/bioinformatics/19.2.301. [DOI] [PubMed] [Google Scholar]
  19. Sanmartín Isabel, Ronquist Fredrik. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst Biol. 2004 Apr;53(2):216–243. doi: 10.1080/10635150490423430. [DOI] [PubMed] [Google Scholar]
  20. Scotland Robert W., Sanderson Michael J. The significance of few versus many in the tree of life. Science. 2004 Jan 30;303(5658):643–643. doi: 10.1126/science.1091483. [DOI] [PubMed] [Google Scholar]
  21. Steane Dorothy A., Wilson Karen L., Hill Robert S. Using matK sequence data to unravel the phylogeny of Casuarinaceae. Mol Phylogenet Evol. 2003 Jul;28(1):47–59. doi: 10.1016/s1055-7903(03)00028-9. [DOI] [PubMed] [Google Scholar]
  22. Tallarek Ulrich, Rapp Erdmann, Van As Henk, Bayer Ernst. Electrokinetics in Fixed Beds: Experimental Demonstration of Electroosmotic Perfusion We acknowledge support of this work by a Marie Curie Fellowship (for U.T.) under the Training and Mobility of Researchers Program of the EU (ERBFMBI-CT98-3437) and the European Community activity Wageningen NMR Centre (ERBCHGE-CT95-0066). . Angew Chem Int Ed Engl. 2001 May 4;40(9):1684–1687. doi: 10.1002/1521-3773(20010504)40:9<1684::aid-anie16840>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  23. Treutlein Jens, Wink Michael. Molecular phylogeny of cycads inferred from rbcL sequences. Naturwissenschaften. 2002 May;89(5):221–225. doi: 10.1007/s00114-002-0308-0. [DOI] [PubMed] [Google Scholar]
  24. Vijverberg K., Mes T. H., Bachmann K. Chloroplast DNA evidence for the evolution of Microseris (Asteraceae) in Australia and New Zealand after long-distance dispersal from western North America. Am J Bot. 1999 Oct;86(10):1448–1463. [PubMed] [Google Scholar]
  25. Wagstaff S. J., Heenan P. B., Sanderson M. J. Classification, origins, and patterns of diversification in New ZealandCarmichaelinae (Fabaceae). Am J Bot. 1999 Sep;86(9):1346–1356. [PubMed] [Google Scholar]
  26. Wikström N., Kenrick P. Evolution of Lycopodiaceae (Lycopsida): estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Mol Phylogenet Evol. 2001 May;19(2):177–186. doi: 10.1006/mpev.2001.0936. [DOI] [PubMed] [Google Scholar]
  27. Woodward F. I., Lomas M. R., Kelly C. K. Global climate and the distribution of plant biomes. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1465–1476. doi: 10.1098/rstb.2004.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES