Abstract
One of the most pervasive patterns observed in biodiversity studies is the tendency for species richness to decline towards the poles. One possible explanation is that high levels of environmental energy promote higher species richness nearer the equator. Energy input may set a limit to the number of species that can coexist in an area or alternatively may influence evolutionary rates. Within flowering plants (angiosperms), families exposed to a high energy load tend to be both more species rich and possess faster evolutionary rates, although there is no evidence that one drives the other. Specific environmental effects are likely to vary among lineages, reflecting the interaction between biological traits and environmental conditions in which they are found. One example of this is demonstrated by the high species richness of the iris family (Iridaceae) in the Cape of South Africa, a likely product of biological traits associated with reproductive isolation and the steep ecological and climatic gradients of the region. Within any set of conditions some lineages will tend to be favoured over others; however, the identity of these lineages will fluctuate with a changing environment, explaining the highly labile nature of diversification rates observed among major lineages of flowering plants.
Full Text
The Full Text of this article is available as a PDF (677.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen Andrew P., Brown James H., Gillooly James F. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science. 2002 Aug 30;297(5586):1545–1548. doi: 10.1126/science.1072380. [DOI] [PubMed] [Google Scholar]
- Andreasen K., Baldwin B. G. Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S-26S rDNA internal and external transcribed spacers. Mol Biol Evol. 2001 Jun;18(6):936–944. doi: 10.1093/oxfordjournals.molbev.a003894. [DOI] [PubMed] [Google Scholar]
- Barraclough T. G., Savolainen V. Evolutionary rates and species diversity in flowering plants. Evolution. 2001 Apr;55(4):677–683. doi: 10.1554/0014-3820(2001)055[0677:erasdi]2.0.co;2. [DOI] [PubMed] [Google Scholar]
- Barrett P. M., Willis K. J. Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biol Rev Camb Philos Soc. 2001 Aug;76(3):411–447. doi: 10.1017/s1464793101005735. [DOI] [PubMed] [Google Scholar]
- Bromham L., Cardillo M. Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. J Evol Biol. 2003 Mar;16(2):200–207. doi: 10.1046/j.1420-9101.2003.00526.x. [DOI] [PubMed] [Google Scholar]
- Bromham L., Rambaut A., Harvey P. H. Determinants of rate variation in mammalian DNA sequence evolution. J Mol Evol. 1996 Dec;43(6):610–621. doi: 10.1007/BF02202109. [DOI] [PubMed] [Google Scholar]
- Crane P. R., Lidgard S. Angiosperm diversification and paleolatitudinal gradients in cretaceous floristic diversity. Science. 1989 Nov 3;246(4930):675–678. doi: 10.1126/science.246.4930.675. [DOI] [PubMed] [Google Scholar]
- Crawley M. J., Harral J. E. Scale dependence in plant biodiversity. Science. 2001 Feb 2;291(5505):864–868. doi: 10.1126/science.291.5505.864. [DOI] [PubMed] [Google Scholar]
- Davies T. Jonathan, Barraclough Timothy G., Chase Mark W., Soltis Pamela S., Soltis Douglas E., Savolainen Vincent. Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proc Natl Acad Sci U S A. 2004 Feb 6;101(7):1904–1909. doi: 10.1073/pnas.0308127100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies T. Jonathan, Savolainen Vincent, Chase Mark W., Moat Justin, Barraclough Timothy G. Environmental energy and evolutionary rates in flowering plants. Proc Biol Sci. 2004 Oct 22;271(1553):2195–2200. doi: 10.1098/rspb.2004.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dynesius M., Jansson R. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9115–9120. doi: 10.1073/pnas.97.16.9115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitch W. M., Beintema J. J. Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol Biol Evol. 1990 Sep;7(5):438–443. doi: 10.1093/oxfordjournals.molbev.a040617. [DOI] [PubMed] [Google Scholar]
- Francis Anthony P., Currie David J. A globally consistent richness-climate relationship for angiosperms. Am Nat. 2003 Mar 7;161(4):523–536. doi: 10.1086/368223. [DOI] [PubMed] [Google Scholar]
- Friedman W. E., Floyd S. K. Perspective: the origin of flowering plants and their reproductive biology--a tale of two phylogenies. Evolution. 2001 Feb;55(2):217–231. doi: 10.1111/j.0014-3820.2001.tb01288.x. [DOI] [PubMed] [Google Scholar]
- Gaut B. S., Muse S. V., Clark W. D., Clegg M. T. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol. 1992 Oct;35(4):292–303. doi: 10.1007/BF00161167. [DOI] [PubMed] [Google Scholar]
- Godfray H. C.J., Lawton J. H. Scale and species numbers. Trends Ecol Evol. 2001 Jul 1;16(7):400–404. doi: 10.1016/s0169-5347(01)02150-4. [DOI] [PubMed] [Google Scholar]
- Linder H. P. The radiation of the Cape flora, southern Africa. Biol Rev Camb Philos Soc. 2003 Nov;78(4):597–638. doi: 10.1017/s1464793103006171. [DOI] [PubMed] [Google Scholar]
- Losos J. B., Schluter D. Analysis of an evolutionary species-area relationship. Nature. 2000 Dec 14;408(6814):847–850. doi: 10.1038/35048558. [DOI] [PubMed] [Google Scholar]
- Macpherson E. Large-scale species-richness gradients in the Atlantic Ocean. Proc Biol Sci. 2002 Aug 22;269(1501):1715–1720. doi: 10.1098/rspb.2002.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magallón S., Sanderson M. J. Absolute diversification rates in angiosperm clades. Evolution. 2001 Sep;55(9):1762–1780. doi: 10.1111/j.0014-3820.2001.tb00826.x. [DOI] [PubMed] [Google Scholar]
- Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A., Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000 Feb 24;403(6772):853–858. doi: 10.1038/35002501. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1998.0337. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rspb.1999.0726. [DOI] [PMC free article] [Google Scholar]
- doi: 10.1098/rspb.1999.0766. [DOI] [PMC free article] [Google Scholar]
- Pawlowski J., Bolivar I., Fahrni J. F., de Vargas C., Gouy M., Zaninetti L. Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol Biol Evol. 1997 May;14(5):498–505. doi: 10.1093/oxfordjournals.molbev.a025786. [DOI] [PubMed] [Google Scholar]
- Pybus O. G., Harvey P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc Biol Sci. 2000 Nov 22;267(1459):2267–2272. doi: 10.1098/rspb.2000.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian H., Ricklefs R. E. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature. 2000 Sep 14;407(6801):180–182. doi: 10.1038/35025052. [DOI] [PubMed] [Google Scholar]
- Rahbek C., Graves G. R. Multiscale assessment of patterns of avian species richness. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4534–4539. doi: 10.1073/pnas.071034898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ricklefs Robert E. Global diversification rates of passerine birds. Proc Biol Sci. 2003 Nov 7;270(1530):2285–2291. doi: 10.1098/rspb.2003.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothschild L. J. The influence of UV radiation on protistan evolution. J Eukaryot Microbiol. 1999 Sep-Oct;46(5):548–555. doi: 10.1111/j.1550-7408.1999.tb06074.x. [DOI] [PubMed] [Google Scholar]
- Sanderson M. J., Donoghue M. J. Shifts in diversification rate with the origin of angiosperms. Science. 1994 Jun 10;264(5165):1590–1593. doi: 10.1126/science.264.5165.1590. [DOI] [PubMed] [Google Scholar]
- Sargent Risa D. Floral symmetry affects speciation rates in angiosperms. Proc Biol Sci. 2004 Mar 22;271(1539):603–608. doi: 10.1098/rspb.2003.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savolainen Vincent, Chase Mark W. A decade of progress in plant molecular phylogenetics. Trends Genet. 2003 Dec;19(12):717–724. doi: 10.1016/j.tig.2003.10.003. [DOI] [PubMed] [Google Scholar]
- Sims Hallie J., McConway Kevin J. Nonstochastic variation of species-level diversification rates within angiosperms. Evolution. 2003 Mar;57(3):460–479. doi: 10.1111/j.0014-3820.2003.tb01538.x. [DOI] [PubMed] [Google Scholar]
- Soltis P. S., Soltis D. E., Chase M. W. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature. 1999 Nov 25;402(6760):402–404. doi: 10.1038/46528. [DOI] [PubMed] [Google Scholar]
- Spicer J. Coping with managed care's administrative hassles. Fam Pract Manag. 1998 Mar;5(3):66-70, 73-4, 76-8. [PubMed] [Google Scholar]
- Stehli F. G., Douglas R. G., Newell N. D. Generation and maintenance of gradients in taxonomic diversity. Science. 1969 May 23;164(3882):947–949. doi: 10.1126/science.164.3882.947. [DOI] [PubMed] [Google Scholar]
- Stokstad E. Myriad ways to reconstruct past climate. Science. 2001 Apr 27;292(5517):658–659. doi: 10.1126/science.292.5517.658. [DOI] [PubMed] [Google Scholar]
- Webster Andrea J., Payne Robert J. H., Pagel Mark. Molecular phylogenies link rates of evolution and speciation. Science. 2003 Jul 25;301(5632):478–478. doi: 10.1126/science.1083202. [DOI] [PubMed] [Google Scholar]
- Whittaker R. H. Dominance and Diversity in Land Plant Communities: Numerical relations of species express the importance of competition in community function and evolution. Science. 1965 Jan 15;147(3655):250–260. doi: 10.1126/science.147.3655.250. [DOI] [PubMed] [Google Scholar]
- Wikström N., Savolainen V., Chase M. W. Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci. 2001 Nov 7;268(1482):2211–2220. doi: 10.1098/rspb.2001.1782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Queiroz Alan. Contingent predictability in evolution: key traits and diversification. Syst Biol. 2002 Dec;51(6):917–929. [PubMed] [Google Scholar]