Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Oct 29;359(1450):1611–1622. doi: 10.1098/rstb.2004.1532

The role of immigrants in the assembly of the South American rainforest tree flora.

R Toby Pennington 1, Christopher W Dick 1
PMCID: PMC1693441  PMID: 15519976

Abstract

The Amazon lowland rainforest flora is conventionally viewed as comprising lineages that evolved in biogeographic isolation after the split of west Gondwana (ca. 100 Myr ago). Recent molecular phylogenies, however, identify immigrant lineages that arrived in South America during its period of oceanic isolation (ca. 100-3 Myr ago). Long-distance sweepstakes dispersal across oceans played an important and possibly predominant role. Stepping-stone migration from Africa and North America through hypothesized Late Cretaceous and Tertiary island chains may have facilitated immigration. An analysis of inventory plot data suggests that immigrant lineages comprise ca. 20% of both the species and individuals of an Amazon tree community in Ecuador. This is more than an order of magnitude higher than previous estimates. We also present data on the community-level similarity between South American and palaeotropical rainforests, and suggest that most taxonomic similarity derives from trans-oceanic dispersal, rather than a shared Gondwanan history.

Full Text

The Full Text of this article is available as a PDF (294.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asmussen C. B., Chase M. W. Coding and noncoding plastid DNA in palm systematics. Am J Bot. 2001 Jun;88(6):1103–1117. [PubMed] [Google Scholar]
  2. Baker W. J., Hedderson T. A., Dransfield J. Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Mol Phylogenet Evol. 2000 Feb;14(2):195–217. doi: 10.1006/mpev.1999.0696. [DOI] [PubMed] [Google Scholar]
  3. Bermingham E., Martin A. P. Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol. 1998 Apr;7(4):499–517. doi: 10.1046/j.1365-294x.1998.00358.x. [DOI] [PubMed] [Google Scholar]
  4. Bremer K. Early Cretaceous lineages of monocot flowering plants. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4707–4711. doi: 10.1073/pnas.080421597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burnham Robyn J., Johnson Kirk R. South American palaeobotany and the origins of neotropical rainforests. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1595–1610. doi: 10.1098/rstb.2004.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chaw Shu-Miaw, Chang Chien-Chang, Chen Hsin-Liang, Li Wen-Hsiung. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol. 2004 Apr;58(4):424–441. doi: 10.1007/s00239-003-2564-9. [DOI] [PubMed] [Google Scholar]
  7. Davis Charles C., Bell Charles D., Mathews Sarah, Donoghue Michael J. Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci U S A. 2002 Apr 30;99(10):6833–6837. doi: 10.1073/pnas.102175899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dick Christopher W., Abdul-Salim Kobinah, Bermingham Eldredge. Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. Am Nat. 2003 Nov 4;162(6):691–703. doi: 10.1086/379795. [DOI] [PubMed] [Google Scholar]
  9. Fritsch P. W. Phylogeny and biogeography of the flowering plant genus Styrax (Styracaceae) based on chloroplast DNA restriction sites and DNA sequences of the internal transcribed spacer region. Mol Phylogenet Evol. 2001 Jun;19(3):387–408. doi: 10.1006/mpev.2001.0933. [DOI] [PubMed] [Google Scholar]
  10. Lavin Matt, Schrire Brian P., Lewis Gwilym, Pennington R. Toby, Delgado-Salinas Alfonso, Thulin Mats, Hughes Colin E., Matos Angela Beyra, Wojciechowski Martin F. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1509–1522. doi: 10.1098/rstb.2004.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Magallón S., Sanderson M. J. Absolute diversification rates in angiosperm clades. Evolution. 2001 Sep;55(9):1762–1780. doi: 10.1111/j.0014-3820.2001.tb00826.x. [DOI] [PubMed] [Google Scholar]
  12. Renner S. S., Clausing G., Meyer K. Historical biogeography of Melastomataceae: the roles of Tertiary migration and long-distance dispersal. Am J Bot. 2001 Jul;88(7):1290–1300. [PubMed] [Google Scholar]
  13. Richardson J. E., Chatrou L. W., Mols J. B., Erkens R. H. J., Pirie M. D. Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1495–1508. doi: 10.1098/rstb.2004.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weiblen G. D. Phylogenetic relationships of functionally dioecious FICUS (Moraceae) based on ribosomal DNA sequences and morphology. Am J Bot. 2000 Sep;87(9):1342–1357. [PubMed] [Google Scholar]
  15. Wikström N., Savolainen V., Chase M. W. Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci. 2001 Nov 7;268(1482):2211–2220. doi: 10.1098/rspb.2001.1782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zeh J. A., Zeh D. W., Bonilla M. M. Phylogeography of the harlequin beetle-riding pseudoscorpion and the rise of the Isthmus of Panamá. Mol Ecol. 2003 Oct;12(10):2759–2769. doi: 10.1046/j.1365-294x.2003.01914.x. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES