Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Nov 29;359(1451):1787–1796. doi: 10.1098/rstb.2004.1547

The frontal cortex and the criminal justice system.

Robert M Sapolsky 1
PMCID: PMC1693445  PMID: 15590619

Abstract

In recent decades, the general trend in the criminal justice system in the USA has been to narrow the range of insanity defences available, with an increasing dependence solely on the M'Naghten rule. This states that innocence by reason of insanity requires that the perpetrator could not understand the nature of their criminal act, or did not know that the act was wrong, by reason of a mental illness. In this essay, I question the appropriateness of this, in light of contemporary neuroscience. Specifically, I focus on the role of the prefrontal cortex (PFC) in cognition, emotional regulation, control of impulsive behaviour and moral reasoning. I review the consequences of PFC damage on these endpoints, the capacity for factors such as alcohol and stress to transiently impair PFC function, and the remarkably late development of the PFC (in which full myelination may not occur until early adulthood). I also consider how individual variation in PFC function and anatomy, within the normative range, covaries with some of these endpoints. This literature is reviewed because of its relevance to issues of criminal insanity; specifically, damage can produce an individual capable of differentiating right from wrong but who, nonetheless, is organically incapable of appropriately regulating their behaviour.

Full Text

The Full Text of this article is available as a PDF (158.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott A. Into the mind of a killer. Nature. 2001 Mar 15;410(6826):296–298. doi: 10.1038/35066717. [DOI] [PubMed] [Google Scholar]
  2. Arenella P. Reflections on current proposals to abolish or reform the insanity defense. Am J Law Med. 1982 Fall;8(3):271–284. [PubMed] [Google Scholar]
  3. Arnsten A. F. Stress impairs prefrontal cortical function in rats and monkeys: role of dopamine D1 and norepinephrine alpha-1 receptor mechanisms. Prog Brain Res. 2000;126:183–192. doi: 10.1016/S0079-6123(00)26014-7. [DOI] [PubMed] [Google Scholar]
  4. Baxter M. G., Parker A., Lindner C. C., Izquierdo A. D., Murray E. A. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci. 2000 Jun 1;20(11):4311–4319. doi: 10.1523/JNEUROSCI.20-11-04311.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braun A. R., Balkin T. J., Wesensten N. J., Gwadry F., Carson R. E., Varga M., Baldwin P., Belenky G., Herscovitch P. Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science. 1998 Jan 2;279(5347):91–95. doi: 10.1126/science.279.5347.91. [DOI] [PubMed] [Google Scholar]
  6. Brower M. C., Price B. H. Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. J Neurol Neurosurg Psychiatry. 2001 Dec;71(6):720–726. doi: 10.1136/jnnp.71.6.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Camille Nathalie, Coricelli Giorgio, Sallet Jerome, Pradat-Diehl Pascale, Duhamel Jean-René, Sirigu Angela. The involvement of the orbitofrontal cortex in the experience of regret. Science. 2004 May 21;304(5674):1167–1170. doi: 10.1126/science.1094550. [DOI] [PubMed] [Google Scholar]
  8. Cardinal R. N., Pennicott D. R., Sugathapala C. L., Robbins T. W., Everitt B. J. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science. 2001 May 24;292(5526):2499–2501. doi: 10.1126/science.1060818. [DOI] [PubMed] [Google Scholar]
  9. Caspi Avshalom, Sugden Karen, Moffitt Terrie E., Taylor Alan, Craig Ian W., Harrington HonaLee, McClay Joseph, Mill Jonathan, Martin Judy, Braithwaite Antony. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003 Jul 18;301(5631):386–389. doi: 10.1126/science.1083968. [DOI] [PubMed] [Google Scholar]
  10. Chow Tiffany W., Miller Bruce L., Boone Kyle, Mishkin Fred, Cummings Jeffrey L. Frontotemporal dementia classification and neuropsychiatry. Neurologist. 2002 Jul;8(4):263–269. doi: 10.1097/00127893-200207000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coffey C. E., Wilkinson W. E., Parashos I. A., Soady S. A., Sullivan R. J., Patterson L. J., Figiel G. S., Webb M. C., Spritzer C. E., Djang W. T. Quantitative cerebral anatomy of the aging human brain: a cross-sectional study using magnetic resonance imaging. Neurology. 1992 Mar;42(3 Pt 1):527–536. doi: 10.1212/wnl.42.3.527. [DOI] [PubMed] [Google Scholar]
  12. Cohen L., Angladette L., Benoit N., Pierrot-Deseilligny C. A man who borrowed cars. Lancet. 1999 Jan 2;353(9146):34–34. doi: 10.1016/S0140-6736(98)09047-3. [DOI] [PubMed] [Google Scholar]
  13. Coleman P. D., Flood D. G. Neuron numbers and dendritic extent in normal aging and Alzheimer's disease. Neurobiol Aging. 1987 Nov-Dec;8(6):521–545. doi: 10.1016/0197-4580(87)90127-8. [DOI] [PubMed] [Google Scholar]
  14. Cummings J. L. Behavioral and psychiatric symptoms associated with Huntington's disease. Adv Neurol. 1995;65:179–186. [PubMed] [Google Scholar]
  15. Farrow T. F., Zheng Y., Wilkinson I. D., Spence S. A., Deakin J. F., Tarrier N., Griffiths P. D., Woodruff P. W. Investigating the functional anatomy of empathy and forgiveness. Neuroreport. 2001 Aug 8;12(11):2433–2438. doi: 10.1097/00001756-200108080-00029. [DOI] [PubMed] [Google Scholar]
  16. Freedman D. J., Riesenhuber M., Poggio T., Miller E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science. 2001 Jan 12;291(5502):312–316. doi: 10.1126/science.291.5502.312. [DOI] [PubMed] [Google Scholar]
  17. Fujii Naotaka, Graybiel Ann M. Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science. 2003 Aug 29;301(5637):1246–1249. doi: 10.1126/science.1086872. [DOI] [PubMed] [Google Scholar]
  18. Greene J. D., Sommerville R. B., Nystrom L. E., Darley J. M., Cohen J. D. An fMRI investigation of emotional engagement in moral judgment. Science. 2001 Sep 14;293(5537):2105–2108. doi: 10.1126/science.1062872. [DOI] [PubMed] [Google Scholar]
  19. Heekeren Hauke R., Wartenburger Isabell, Schmidt Helge, Schwintowski Hans-Peter, Villringer Arno. An fMRI study of simple ethical decision-making. Neuroreport. 2003 Jul 1;14(9):1215–1219. doi: 10.1097/00001756-200307010-00005. [DOI] [PubMed] [Google Scholar]
  20. Helmuth Laura. In sickness or in health? Science. 2003 Oct 31;302(5646):808–810. doi: 10.1126/science.302.5646.808. [DOI] [PubMed] [Google Scholar]
  21. Jaeggi Susanne M., Seewer Ria, Nirkko Arto C., Eckstein Doris, Schroth Gerhard, Groner Rudolf, Gutbrod Klemens. Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: functional magnetic resonance imaging study. Neuroimage. 2003 Jun;19(2 Pt 1):210–225. doi: 10.1016/s1053-8119(03)00098-3. [DOI] [PubMed] [Google Scholar]
  22. Kruijver F. P., Zhou J. N., Pool C. W., Hofman M. A., Gooren L. J., Swaab D. F. Male-to-female transsexuals have female neuron numbers in a limbic nucleus. J Clin Endocrinol Metab. 2000 May;85(5):2034–2041. doi: 10.1210/jcem.85.5.6564. [DOI] [PubMed] [Google Scholar]
  23. Lim Miranda M., Wang Zuoxin, Olazábal Daniel E., Ren Xianghui, Terwilliger Ernest F., Young Larry J. Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature. 2004 Jun 17;429(6993):754–757. doi: 10.1038/nature02539. [DOI] [PubMed] [Google Scholar]
  24. Matsumoto Kenji, Suzuki Wataru, Tanaka Keiji. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science. 2003 Jul 11;301(5630):229–232. doi: 10.1126/science.1084204. [DOI] [PubMed] [Google Scholar]
  25. Miller E. K., Cohen J. D. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202. doi: 10.1146/annurev.neuro.24.1.167. [DOI] [PubMed] [Google Scholar]
  26. Moghaddam B., Bolinao M. L., Stein-Behrens B., Sapolsky R. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res. 1994 Aug 29;655(1-2):251–254. doi: 10.1016/0006-8993(94)91622-5. [DOI] [PubMed] [Google Scholar]
  27. Moll Jorge, de Oliveira-Souza Ricardo, Eslinger Paul J., Bramati Ivanei E., Mourão-Miranda Janaína, Andreiuolo Pedro Angelo, Pessoa Luiz. The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. J Neurosci. 2002 Apr 1;22(7):2730–2736. doi: 10.1523/JNEUROSCI.22-07-02730.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moll Jorge, de Oliveira-Souza Ricardo, Eslinger Paul J. Morals and the human brain: a working model. Neuroreport. 2003 Mar 3;14(3):299–305. doi: 10.1097/00001756-200303030-00001. [DOI] [PubMed] [Google Scholar]
  29. Nyffeler T., Regard M. Kleptomania in a patient with a right frontolimbic lesion. Neuropsychiatry Neuropsychol Behav Neurol. 2001 Jan;14(1):73–76. [PubMed] [Google Scholar]
  30. Ochsner Kevin N., Bunge Silvia A., Gross James J., Gabrieli John D. E. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci. 2002 Nov 15;14(8):1215–1229. doi: 10.1162/089892902760807212. [DOI] [PubMed] [Google Scholar]
  31. Paus T., Zijdenbos A., Worsley K., Collins D. L., Blumenthal J., Giedd J. N., Rapoport J. L., Evans A. C. Structural maturation of neural pathways in children and adolescents: in vivo study. Science. 1999 Mar 19;283(5409):1908–1911. doi: 10.1126/science.283.5409.1908. [DOI] [PubMed] [Google Scholar]
  32. Raine Adrian. Biosocial studies of antisocial and violent behavior in children and adults: a review. J Abnorm Child Psychol. 2002 Aug;30(4):311–326. doi: 10.1023/a:1015754122318. [DOI] [PubMed] [Google Scholar]
  33. Ridderinkhof K. Richard, de Vlugt Yolande, Bramlage Aldo, Spaan Marcus, Elton Martin, Snel Jan, Band Guido P. H. Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science. 2002 Nov 7;298(5601):2209–2211. doi: 10.1126/science.1076929. [DOI] [PubMed] [Google Scholar]
  34. Rilling J. K., Insel T. R. The primate neocortex in comparative perspective using magnetic resonance imaging. J Hum Evol. 1999 Aug;37(2):191–223. doi: 10.1006/jhev.1999.0313. [DOI] [PubMed] [Google Scholar]
  35. Schultz W., Tremblay L., Hollerman J. R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex. 2000 Mar;10(3):272–284. doi: 10.1093/cercor/10.3.272. [DOI] [PubMed] [Google Scholar]
  36. Simpson J. R., Jr, Drevets W. C., Snyder A. Z., Gusnard D. A., Raichle M. E. Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):688–693. doi: 10.1073/pnas.98.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sánchez M. M., Young L. J., Plotsky P. M., Insel T. R. Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci. 2000 Jun 15;20(12):4657–4668. doi: 10.1523/JNEUROSCI.20-12-04657.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tisserand Danielle J., Jolles J. On the involvement of prefrontal networks in cognitive ageing. Cortex. 2003 Sep-Dec;39(4-5):1107–1128. doi: 10.1016/s0010-9452(08)70880-3. [DOI] [PubMed] [Google Scholar]
  39. Tomarken A. J., Davidson R. J. Frontal brain activation in repressors and nonrepressors. J Abnorm Psychol. 1994 May;103(2):339–349. doi: 10.1037//0021-843x.103.2.339. [DOI] [PubMed] [Google Scholar]
  40. Waxman S. G., Geschwind N. Hypergraphia in temporal lobe epilepsy. Neurology. 1974 Jul;24(7):629–636. doi: 10.1212/wnl.24.7.629. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES