Abstract
Protein engineering and design provide excellent tools to investigate the principles by which particular structural features relate to the mechanisms that underlie the biological function of a protein. In addition to studies aimed at dissecting the communication pathways within enzymes, recent advances in protein engineering approaches make it possible to generate enzymes with increased catalytic efficiency and specifically altered or newly introduced functions. Here, two approaches using state-of-the-art protein design and engineering are described in detail to demonstrate how key features of the myosin motor can be changed in a specific and predictable manner. First, it is shown how replacement of an actin-binding surface loop with synthetic sequences, whose flexibility and charge density is varied, can be employed to manipulate the actin affinity, the catalytic activity and the efficiency of coupling between actin- and nucleotide-binding sites of myosin motor constructs. Then the use of pre-existing molecular building blocks, which are derived from unrelated proteins, is described for manipulating the velocity and even the direction of movement of recombinant myosins.
Full Text
The Full Text of this article is available as a PDF (430.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anson M., Geeves M. A., Kurzawa S. E., Manstein D. J. Myosin motors with artificial lever arms. EMBO J. 1996 Nov 15;15(22):6069–6074. [PMC free article] [PubMed] [Google Scholar]
- Conibear Paul B., Bagshaw Clive R., Fajer Piotr G., Kovács Mihály, Málnási-Csizmadia András. Myosin cleft movement and its coupling to actomyosin dissociation. Nat Struct Biol. 2003 Sep 21;10(10):831–835. doi: 10.1038/nsb986. [DOI] [PubMed] [Google Scholar]
- Coureux Pierre-Damien, Wells Amber L., Ménétrey Julie, Yengo Christopher M., Morris Carl A., Sweeney H. Lee, Houdusse Anne. A structural state of the myosin V motor without bound nucleotide. Nature. 2003 Sep 25;425(6956):419–423. doi: 10.1038/nature01927. [DOI] [PubMed] [Google Scholar]
- Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
- Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
- Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
- Funatsu T., Harada Y., Tokunaga M., Saito K., Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature. 1995 Apr 6;374(6522):555–559. doi: 10.1038/374555a0. [DOI] [PubMed] [Google Scholar]
- Furch M., Geeves M. A., Manstein D. J. Modulation of actin affinity and actomyosin adenosine triphosphatase by charge changes in the myosin motor domain. Biochemistry. 1998 May 5;37(18):6317–6326. doi: 10.1021/bi972851y. [DOI] [PubMed] [Google Scholar]
- Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
- Goodson H. V., Warrick H. M., Spudich J. A. Specialized conservation of surface loops of myosin: evidence that loops are involved in determining functional characteristics. J Mol Biol. 1999 Mar 19;287(1):173–185. doi: 10.1006/jmbi.1999.2565. [DOI] [PubMed] [Google Scholar]
- Goody Roger S., Hofmann-Goody Waltraud. Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. Eur Biophys J. 2002 Jun 21;31(4):268–274. doi: 10.1007/s00249-002-0225-3. [DOI] [PubMed] [Google Scholar]
- Gulick A. M., Bauer C. B., Thoden J. B., Pate E., Yount R. G., Rayment I. X-ray structures of the Dictyostelium discoideum myosin motor domain with six non-nucleotide analogs. J Biol Chem. 2000 Jan 7;275(1):398–408. doi: 10.1074/jbc.275.1.398. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
- HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
- HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
- Holmes K. C., Geeves M. A. The structural basis of muscle contraction. Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):419–431. doi: 10.1098/rstb.2000.0583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes K. C. The swinging lever-arm hypothesis of muscle contraction. Curr Biol. 1997 Feb 1;7(2):R112–R118. doi: 10.1016/s0960-9822(06)00051-0. [DOI] [PubMed] [Google Scholar]
- Holmes Kenneth C., Angert Isabel, Kull F. Jon, Jahn Werner, Schröder Rasmus R. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature. 2003 Sep 25;425(6956):423–427. doi: 10.1038/nature02005. [DOI] [PubMed] [Google Scholar]
- Houdusse A., Kalabokis V. N., Himmel D., Szent-Györgyi A. G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459–470. doi: 10.1016/s0092-8674(00)80756-4. [DOI] [PubMed] [Google Scholar]
- Houdusse A., Sweeney H. L. Myosin motors: missing structures and hidden springs. Curr Opin Struct Biol. 2001 Apr;11(2):182–194. doi: 10.1016/s0959-440x(00)00188-3. [DOI] [PubMed] [Google Scholar]
- Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
- Ishijima A., Kojima H., Funatsu T., Tokunaga M., Higuchi H., Tanaka H., Yanagida T. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell. 1998 Jan 23;92(2):161–171. doi: 10.1016/s0092-8674(00)80911-3. [DOI] [PubMed] [Google Scholar]
- Ito Kohji, Kashiyama Taku, Shimada Kiyo, Yamaguchi Akira, Awata Jun ya, Hachikubo You, Manstein Dietmar J., Yamamoto Keiichi. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. Biochem Biophys Res Commun. 2003 Dec 26;312(4):958–964. doi: 10.1016/j.bbrc.2003.10.202. [DOI] [PubMed] [Google Scholar]
- Kliche W., Fujita-Becker S., Kollmar M., Manstein D. J., Kull F. J. Structure of a genetically engineered molecular motor. EMBO J. 2001 Jan 15;20(1-2):40–46. doi: 10.1093/emboj/20.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kollmar Martin, Dürrwang Ulrike, Kliche Werner, Manstein Dietmar J., Kull F. Jon. Crystal structure of the motor domain of a class-I myosin. EMBO J. 2002 Jun 3;21(11):2517–2525. doi: 10.1093/emboj/21.11.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kron S. J., Spudich J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6272–6276. doi: 10.1073/pnas.83.17.6272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurzawa-Goertz S. E., Perreault-Micale C. L., Trybus K. M., Szent-Györgyi A. G., Geeves M. A. Loop I can modulate ADP affinity, ATPase activity, and motility of different scallop myosins. Transient kinetic analysis of S1 isoforms. Biochemistry. 1998 May 19;37(20):7517–7525. doi: 10.1021/bi972844+. [DOI] [PubMed] [Google Scholar]
- Kurzawa S. E., Manstein D. J., Geeves M. A. Dictyostelium discoideum myosin II: characterization of functional myosin motor fragments. Biochemistry. 1997 Jan 14;36(2):317–323. doi: 10.1021/bi962166b. [DOI] [PubMed] [Google Scholar]
- Levitsky D. I., Ponomarev M. A., Geeves M. A., Shnyrov V. L., Manstein D. J. Differential scanning calorimetric study of the thermal unfolding of the motor domain fragments of Dictyostelium discoideum myosin II. Eur J Biochem. 1998 Jan 15;251(1-2):275–280. doi: 10.1046/j.1432-1327.1998.2510275.x. [DOI] [PubMed] [Google Scholar]
- Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
- Manstein D. J., Ruppel K. M., Spudich J. A. Expression and characterization of a functional myosin head fragment in Dictyostelium discoideum. Science. 1989 Nov 3;246(4930):656–658. doi: 10.1126/science.2530629. [DOI] [PubMed] [Google Scholar]
- Matsu-ura M., Ikebe M. Requirement of the two-headed structure for the phosphorylation dependent regulation of smooth muscle myosin. FEBS Lett. 1995 Apr 24;363(3):246–250. doi: 10.1016/0014-5793(95)00326-5. [DOI] [PubMed] [Google Scholar]
- Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
- Molloy J. E., Burns J. E., Sparrow J. C., Tregear R. T., Kendrick-Jones J., White D. C. Single-molecule mechanics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers. Biophys J. 1995 Apr;68(4 Suppl):298S–305S. [PMC free article] [PubMed] [Google Scholar]
- Murphy C. T., Spudich J. A. Variable surface loops and myosin activity: accessories to a motor. J Muscle Res Cell Motil. 2000 Feb;21(2):139–151. doi: 10.1023/a:1005610007209. [DOI] [PubMed] [Google Scholar]
- Ponomarev M. A., Furch M., Levitsky D. I., Manstein D. J. Charge changes in loop 2 affect the thermal unfolding of the myosin motor domain bound to F-actin. Biochemistry. 2000 Apr 18;39(15):4527–4532. doi: 10.1021/bi992420a. [DOI] [PubMed] [Google Scholar]
- Prakash B., Renault L., Praefcke G. J., Herrmann C., Wittinghofer A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J. 2000 Sep 1;19(17):4555–4564. doi: 10.1093/emboj/19.17.4555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
- Reedy M. K., Holmes K. C., Tregear R. T. Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature. 1965 Sep 18;207(5003):1276–1280. doi: 10.1038/2071276a0. [DOI] [PubMed] [Google Scholar]
- Reubold Thomas F., Eschenburg Susanne, Becker Andreas, Kull F. Jon, Manstein Dietmar J. A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol. 2003 Sep 21;10(10):826–830. doi: 10.1038/nsb987. [DOI] [PubMed] [Google Scholar]
- Ruff C., Furch M., Brenner B., Manstein D. J., Meyhöfer E. Single-molecule tracking of myosins with genetically engineered amplifier domains. Nat Struct Biol. 2001 Mar;8(3):226–229. doi: 10.1038/84962. [DOI] [PubMed] [Google Scholar]
- Schröder R. R., Manstein D. J., Jahn W., Holden H., Rayment I., Holmes K. C., Spudich J. A. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature. 1993 Jul 8;364(6433):171–174. doi: 10.1038/364171a0. [DOI] [PubMed] [Google Scholar]
- Sheetz M. P., Spudich J. A. Movement of myosin-coated structures on actin cables. Cell Motil. 1983;3(5-6):485–489. doi: 10.1002/cm.970030515. [DOI] [PubMed] [Google Scholar]
- Sweeney H. L., Rosenfeld S. S., Brown F., Faust L., Smith J., Xing J., Stein L. A., Sellers J. R. Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J Biol Chem. 1998 Mar 13;273(11):6262–6270. doi: 10.1074/jbc.273.11.6262. [DOI] [PubMed] [Google Scholar]
- Tsiavaliaris Georgios, Fujita-Becker Setsuko, Manstein Dietmar J. Molecular engineering of a backwards-moving myosin motor. Nature. 2004 Feb 5;427(6974):558–561. doi: 10.1038/nature02303. [DOI] [PubMed] [Google Scholar]
- Uyeda T. Q., Ruppel K. M., Spudich J. A. Enzymatic activities correlate with chimaeric substitutions at the actin-binding face of myosin. Nature. 1994 Apr 7;368(6471):567–569. doi: 10.1038/368567a0. [DOI] [PubMed] [Google Scholar]
- Vale R. D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol. 1996 Oct;135(2):291–302. doi: 10.1083/jcb.135.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volkmann N., Hanein D., Ouyang G., Trybus K. M., DeRosier D. J., Lowey S. Evidence for cleft closure in actomyosin upon ADP release. Nat Struct Biol. 2000 Dec;7(12):1147–1155. doi: 10.1038/82008. [DOI] [PubMed] [Google Scholar]
- Wells A. L., Lin A. W., Chen L. Q., Safer D., Cain S. M., Hasson T., Carragher B. O., Milligan R. A., Sweeney H. L. Myosin VI is an actin-based motor that moves backwards. Nature. 1999 Sep 30;401(6752):505–508. doi: 10.1038/46835. [DOI] [PubMed] [Google Scholar]
- Yanagida T., Nakase M., Nishiyama K., Oosawa F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature. 1984 Jan 5;307(5946):58–60. doi: 10.1038/307058a0. [DOI] [PubMed] [Google Scholar]