Abstract
Transient kinetic measurements of the actomyosin ATPase provided the basis of the Lymn-Taylor model for the cross-bridge cycle, which underpins current models of contraction. Following the determination of the structure of the myosin motor domain, it has been possible to introduce probes at defined sites and resolve the steps in more detail. Probes have been introduced in the Dicytostelium myosin II motor domain via three routes: (i) single tryptophan residues at strategic locations throughout the motor domain; (ii) green fluorescent protein fusions at the N and C termini; and (iii) labelled cysteine residues engineered across the actin-binding cleft. These studies are interpreted with reference to motor domain crystal structures and suggest that the tryptophan (W501) in the relay loop senses the lever arm position, which is controlled by the switch 2 open-to-closed transition at the active site. Actin has little effect on this process per se. A mechanism of product release is proposed in which actin has an indirect effect on the switch 2 and lever arm position to achieve mechanochemical coupling. Switch 1 closing appears to be a key step in the nucleotide-induced actin dissociation, while its opening is required for the subsequent activation of product release. This process has been probed with F239W and F242W substitutions in the switch 1 loop. The E706K mutation in skeletal myosin IIa is associated with a human myopathy. To simulate this disease we investigated the homologous mutation, E683K, in the Dictyostelium myosin motor domain.
Full Text
The Full Text of this article is available as a PDF (888.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagshaw C. R., Eccleston J. F., Eckstein F., Goody R. S., Gutfreund H., Trentham D. R. The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Biochem J. 1974 Aug;141(2):351–364. doi: 10.1042/bj1410351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagshaw C. R., Trentham D. R. The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction. Biochem J. 1974 Aug;141(2):331–349. doi: 10.1042/bj1410331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagshaw C. R., Trentham D. R. The reversibility of adenosine triphosphate cleavage by myosin. Biochem J. 1973 Jun;133(2):323–328. doi: 10.1042/bj1330323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagshaw C. R., Trentham D. R., Wolcott R. G., Boyer P. D. Oxygen exchange in the gamma-phosphoryl group of protein-bound ATP during Mg2+-dependent adenosine triphosphatase activity of myosin. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2592–2596. doi: 10.1073/pnas.72.7.2592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Batra R., Geeves M. A., Manstein D. J. Kinetic analysis of Dictyostelium discoideum myosin motor domains with glycine-to-alanine mutations in the reactive thiol region. Biochemistry. 1999 May 11;38(19):6126–6134. doi: 10.1021/bi982251e. [DOI] [PubMed] [Google Scholar]
- Batra R., Manstein D. J. Functional characterisation of Dictyostelium myosin II with conserved tryptophanyl residue 501 mutated to tyrosine. Biol Chem. 1999 Jul-Aug;380(7-8):1017–1023. doi: 10.1515/BC.1999.126. [DOI] [PubMed] [Google Scholar]
- Bershitsky S. Y., Tsaturyan A. K., Bershitskaya O. N., Mashanov G. I., Brown P., Burns R., Ferenczi M. A. Muscle force is generated by myosin heads stereospecifically attached to actin. Nature. 1997 Jul 10;388(6638):186–190. doi: 10.1038/40651. [DOI] [PubMed] [Google Scholar]
- Conibear Paul B., Bagshaw Clive R., Fajer Piotr G., Kovács Mihály, Málnási-Csizmadia András. Myosin cleft movement and its coupling to actomyosin dissociation. Nat Struct Biol. 2003 Sep 21;10(10):831–835. doi: 10.1038/nsb986. [DOI] [PubMed] [Google Scholar]
- Coureux Pierre-Damien, Wells Amber L., Ménétrey Julie, Yengo Christopher M., Morris Carl A., Sweeney H. Lee, Houdusse Anne. A structural state of the myosin V motor without bound nucleotide. Nature. 2003 Sep 25;425(6956):419–423. doi: 10.1038/nature01927. [DOI] [PubMed] [Google Scholar]
- Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol. 1992;451:247–278. doi: 10.1113/jphysiol.1992.sp019163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
- Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
- Goody R. S., Hofmann W., Mannherz G. H. The binding constant of ATP to myosin S1 fragment. Eur J Biochem. 1977 Sep;78(2):317–324. doi: 10.1111/j.1432-1033.1977.tb11742.x. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
- HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
- Holmes K. C., Geeves M. A. The structural basis of muscle contraction. Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):419–431. doi: 10.1098/rstb.2000.0583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes K. C., Schröder R. R., Sweeney H. L., Houdusse Anne. The structure of the rigor complex and its implications for the power stroke. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1819–1828. doi: 10.1098/rstb.2004.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes Kenneth C., Angert Isabel, Kull F. Jon, Jahn Werner, Schröder Rasmus R. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature. 2003 Sep 25;425(6956):423–427. doi: 10.1038/nature02005. [DOI] [PubMed] [Google Scholar]
- Houdusse A., Szent-Gyorgyi A. G., Cohen C. Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11238–11243. doi: 10.1073/pnas.200376897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huston E. E., Grammer J. C., Yount R. G. Flexibility of the myosin heavy chain: direct evidence that the region containing SH1 and SH2 can move 10 A under the influence of nucleotide binding. Biochemistry. 1988 Dec 13;27(25):8945–8952. doi: 10.1021/bi00425a011. [DOI] [PubMed] [Google Scholar]
- Huxley H. E. Past, present and future experiments on muscle. Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):539–543. doi: 10.1098/rstb.2000.0595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
- Johnson K. A., Taylor E. W. Intermediate states of subfragment 1 and actosubfragment 1 ATPase: reevaluation of the mechanism. Biochemistry. 1978 Aug 22;17(17):3432–3442. doi: 10.1021/bi00610a002. [DOI] [PubMed] [Google Scholar]
- Kovacs Mihaly, Malnasi-Csizmadia Andras, Woolley Robert J., Bagshaw Clive R. Analysis of nucleotide binding to Dictyostelium myosin II motor domains containing a single tryptophan near the active site. J Biol Chem. 2002 Apr 23;277(32):28459–28467. doi: 10.1074/jbc.M202180200. [DOI] [PubMed] [Google Scholar]
- Kuhlman P. A., Bagshaw C. R. ATPase kinetics of the Dictyostelium discoideum myosin II motor domain. J Muscle Res Cell Motil. 1998 Jun;19(5):491–504. doi: 10.1023/a:1005304408812. [DOI] [PubMed] [Google Scholar]
- Kurzawa S. E., Manstein D. J., Geeves M. A. Dictyostelium discoideum myosin II: characterization of functional myosin motor fragments. Biochemistry. 1997 Jan 14;36(2):317–323. doi: 10.1021/bi962166b. [DOI] [PubMed] [Google Scholar]
- Lehrer S. S. Intramolecular pyrene excimer fluorescence: a probe of proximity and protein conformational change. Methods Enzymol. 1997;278:286–295. doi: 10.1016/s0076-6879(97)78015-7. [DOI] [PubMed] [Google Scholar]
- Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
- Mandelkow E. M., Mandelkow E. Fluorimetric studies on the influence of metal ions and chelators on the interaction between myosin and ATP. FEBS Lett. 1973 Jul 1;33(2):161–166. doi: 10.1016/0014-5793(73)80183-8. [DOI] [PubMed] [Google Scholar]
- Mannherz H. G., Schenck H., Goody R. S. Synthesis of ATP from ADP and inorganic phosphate at the myosin-subfragment 1 active site. Eur J Biochem. 1974 Oct 1;48(1):287–295. doi: 10.1111/j.1432-1033.1974.tb03767.x. [DOI] [PubMed] [Google Scholar]
- Millar N. C., Geeves M. A. Protein fluorescence changes associated with ATP and adenosine 5'-[gamma-thio]triphosphate binding to skeletal muscle myosin subfragment 1 and actomyosin subfragment 1. Biochem J. 1988 Feb 1;249(3):735–743. doi: 10.1042/bj2490735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller L., Coppedge J., Reisler E. The reactive SH1 and SH2 cysteines in myosin subfragment 1 are cross-linked at similar rates with reagents of different length. Biochem Biophys Res Commun. 1982 May 14;106(1):117–122. doi: 10.1016/0006-291x(82)92066-6. [DOI] [PubMed] [Google Scholar]
- Málnási-Csizmadia A., Woolley R. J., Bagshaw C. R. Resolution of conformational states of Dictyostelium myosin II motor domain using tryptophan (W501) mutants: implications for the open-closed transition identified by crystallography. Biochemistry. 2000 Dec 26;39(51):16135–16146. doi: 10.1021/bi001125j. [DOI] [PubMed] [Google Scholar]
- Ranatunga K. W., Coupland Moira E., Mutungi G. An asymmetry in the phosphate dependence of tension transients induced by length perturbation in mammalian (rabbit psoas) muscle fibres. J Physiol. 2002 Aug 1;542(Pt 3):899–910. doi: 10.1113/jphysiol.2002.019471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
- Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
- Reubold Thomas F., Eschenburg Susanne, Becker Andreas, Kull F. Jon, Manstein Dietmar J. A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol. 2003 Sep 21;10(10):826–830. doi: 10.1038/nsb987. [DOI] [PubMed] [Google Scholar]
- Ritchie M. D., Geeves M. A., Woodward S. K., Manstein D. J. Kinetic characterization of a cytoplasmic myosin motor domain expressed in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8619–8623. doi: 10.1073/pnas.90.18.8619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruppel K. M., Spudich J. A. Structure-function analysis of the motor domain of myosin. Annu Rev Cell Dev Biol. 1996;12:543–573. doi: 10.1146/annurev.cellbio.12.1.543. [DOI] [PubMed] [Google Scholar]
- Sasaki Naoya, Ohkura Reiko, Sutoh Kazuo. Dictyostelium myosin II mutations that uncouple the converter swing and ATP hydrolysis cycle. Biochemistry. 2003 Jan 14;42(1):90–95. doi: 10.1021/bi026051l. [DOI] [PubMed] [Google Scholar]
- Shih W. M., Gryczynski Z., Lakowicz J. R., Spudich J. A. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell. 2000 Sep 1;102(5):683–694. doi: 10.1016/s0092-8674(00)00090-8. [DOI] [PubMed] [Google Scholar]
- Sleep J. A., Hutton R. L. Exchange between inorganic phosphate and adenosine 5'-triphosphate in the medium by actomyosin subfragment 1. Biochemistry. 1980 Apr 1;19(7):1276–1283. doi: 10.1021/bi00548a002. [DOI] [PubMed] [Google Scholar]
- Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
- Steffen Walter, Sleep John. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1857–1865. doi: 10.1098/rstb.2004.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steffen Walter, Smith David, Sleep John. The working stroke upon myosin-nucleotide complexes binding to actin. Proc Natl Acad Sci U S A. 2003 May 15;100(11):6434–6439. doi: 10.1073/pnas.1231998100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki Y., Yasunaga T., Ohkura R., Wakabayashi T., Sutoh K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature. 1998 Nov 26;396(6709):380–383. doi: 10.1038/24640. [DOI] [PubMed] [Google Scholar]
- Tajsharghi H., Thornell L-E, Darin N., Martinsson T., Kyllerman M., Wahlström J., Oldfors A. Myosin heavy chain IIa gene mutation E706K is pathogenic and its expression increases with age. Neurology. 2002 Mar 12;58(5):780–786. doi: 10.1212/wnl.58.5.780. [DOI] [PubMed] [Google Scholar]
- Taylor E. W. Transient phase of adenosine triphosphate hydrolysis by myosin, heavy meromyosin, and subfragment 1. Biochemistry. 1977 Feb 22;16(4):732–739. doi: 10.1021/bi00623a027. [DOI] [PubMed] [Google Scholar]
- Trybus K. M., Taylor E. W. Transient kinetics of adenosine 5'-diphosphate and adenosine 5'-(beta, gamma-imidotriphosphate) binding to subfragment 1 and actosubfragment 1. Biochemistry. 1982 Mar 16;21(6):1284–1294. doi: 10.1021/bi00535a028. [DOI] [PubMed] [Google Scholar]
- Urbanke C., Wray J. A fluorescence temperature-jump study of conformational transitions in myosin subfragment 1. Biochem J. 2001 Aug 15;358(Pt 1):165–173. doi: 10.1042/0264-6021:3580165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wachter R. M., Remington S. J. Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate. Curr Biol. 1999 Sep 9;9(17):R628–R629. doi: 10.1016/s0960-9822(99)80408-4. [DOI] [PubMed] [Google Scholar]
- Wakelin S., Bagshaw C. R. A prism combination for near isotropic fluorescence excitation by total internal reflection. J Microsc. 2003 Feb;209(Pt 2):143–148. doi: 10.1046/j.1365-2818.2003.01118.x. [DOI] [PubMed] [Google Scholar]
- Wakelin Stuart, Conibear Paul B., Woolley Robert J., Floyd David N., Bagshaw Clive R., Kovács Mihály, Málnási-Csizmadia András. Engineering Dictyostelium discoideum myosin II for the introduction of site-specific fluorescence probes. J Muscle Res Cell Motil. 2002;23(7-8):673–683. doi: 10.1023/a:1024411208497. [DOI] [PubMed] [Google Scholar]
- Xiao Ming, Reifenberger Jeff G., Wells Amber L., Baldacchino Corry, Chen Li-Qiong, Ge Pinghua, Sweeney H. Lee, Selvin Paul R. An actin-dependent conformational change in myosin. Nat Struct Biol. 2003 May;10(5):402–408. doi: 10.1038/nsb916. [DOI] [PubMed] [Google Scholar]
- Yengo C. M., Chrin L. R., Rovner A. S., Berger C. L. Tryptophan 512 is sensitive to conformational changes in the rigid relay loop of smooth muscle myosin during the MgATPase cycle. J Biol Chem. 2000 Aug 18;275(33):25481–25487. doi: 10.1074/jbc.M002910200. [DOI] [PubMed] [Google Scholar]
- Yount R. G., Lawson D., Rayment I. Is myosin a "back door" enzyme? Biophys J. 1995 Apr;68(4 Suppl):44S–49S. [PMC free article] [PubMed] [Google Scholar]