Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Dec 29;359(1452):1819–1828. doi: 10.1098/rstb.2004.1566

The structure of the rigor complex and its implications for the power stroke.

K C Holmes 1, R R Schröder 1, H L Sweeney 1, Anne Houdusse 1
PMCID: PMC1693467  PMID: 15647158

Abstract

Decorated actin provides a model system for studying the strong interaction between actin and myosin. Cryo-energy-filter electron microscopy has recently yielded a 14 A resolution map of rabbit skeletal actin decorated with chicken skeletal S1. The crystal structure of the cross-bridge from skeletal chicken myosin could not be fitted into the three-dimensional electron microscope map without some deformation. However, a newly published structure of the nucleotide-free myosin V cross-bridge, which is apparently already in the strong binding form, can be fitted into the three-dimensional reconstruction without distortion. This supports the notion that nucleotide-free myosin V is an excellent model for strongly bound myosin and allows us to describe the actin-myosin interface. In myosin V the switch 2 element is closed although the lever arm is down (post-power stroke). Therefore, it appears likely that switch 2 does not open very much during the power stroke. The myosin V structure also differs from the chicken skeletal myosin structure in the nucleotide-binding site and the degree of bending of the backbone beta-sheet. These suggest a mechanism for the control of the power stroke by strong actin binding.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  2. Conibear Paul B., Bagshaw Clive R., Fajer Piotr G., Kovács Mihály, Málnási-Csizmadia András. Myosin cleft movement and its coupling to actomyosin dissociation. Nat Struct Biol. 2003 Sep 21;10(10):831–835. doi: 10.1038/nsb986. [DOI] [PubMed] [Google Scholar]
  3. Coureux Pierre-Damien, Wells Amber L., Ménétrey Julie, Yengo Christopher M., Morris Carl A., Sweeney H. Lee, Houdusse Anne. A structural state of the myosin V motor without bound nucleotide. Nature. 2003 Sep 25;425(6956):419–423. doi: 10.1038/nature01927. [DOI] [PubMed] [Google Scholar]
  4. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  5. Esnouf R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1. [DOI] [PubMed] [Google Scholar]
  6. Esnouf R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):938–940. doi: 10.1107/s0907444998017363. [DOI] [PubMed] [Google Scholar]
  7. Falcigno L., Costantini S., D'Auria G., Bruno B. M., Zobeley S., Zanotti G., Paolillo L. Phalloidin synthetic analogues: structural requirements in the interaction with F-actin. Chemistry. 2001 Nov 5;7(21):4665–4673. doi: 10.1002/1521-3765(20011105)7:21<4665::aid-chem4665>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  8. Geeves M. A., Conibear P. B. The role of three-state docking of myosin S1 with actin in force generation. Biophys J. 1995 Apr;68(4 Suppl):194S–201S. [PMC free article] [PubMed] [Google Scholar]
  9. Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
  10. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  11. Holmes Kenneth C., Angert Isabel, Kull F. Jon, Jahn Werner, Schröder Rasmus R. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature. 2003 Sep 25;425(6956):423–427. doi: 10.1038/nature02005. [DOI] [PubMed] [Google Scholar]
  12. Joel P. B., Trybus K. M., Sweeney H. L. Two conserved lysines at the 50/20-kDa junction of myosin are necessary for triggering actin activation. J Biol Chem. 2000 Oct 20;276(5):2998–3003. doi: 10.1074/jbc.M006930200. [DOI] [PubMed] [Google Scholar]
  13. Joel Peteranne B., Sweeney H. Lee, Trybus Kathleen M. Addition of lysines to the 50/20 kDa junction of myosin strengthens weak binding to actin without affecting the maximum ATPase activity. Biochemistry. 2003 Aug 5;42(30):9160–9166. doi: 10.1021/bi034415j. [DOI] [PubMed] [Google Scholar]
  14. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  15. Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
  16. Otterbein L. R., Graceffa P., Dominguez R. The crystal structure of uncomplexed actin in the ADP state. Science. 2001 Jul 27;293(5530):708–711. doi: 10.1126/science.1059700. [DOI] [PubMed] [Google Scholar]
  17. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  18. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  19. Reubold Thomas F., Eschenburg Susanne, Becker Andreas, Kull F. Jon, Manstein Dietmar J. A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol. 2003 Sep 21;10(10):826–830. doi: 10.1038/nsb987. [DOI] [PubMed] [Google Scholar]
  20. Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
  21. Sweeney H. Lee, Houdusse Anne. The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1829–1841. doi: 10.1098/rstb.2004.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tirion M. M., ben-Avraham D., Lorenz M., Holmes K. C. Normal modes as refinement parameters for the F-actin model. Biophys J. 1995 Jan;68(1):5–12. doi: 10.1016/S0006-3495(95)80156-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Xiao Ming, Reifenberger Jeff G., Wells Amber L., Baldacchino Corry, Chen Li-Qiong, Ge Pinghua, Sweeney H. Lee, Selvin Paul R. An actin-dependent conformational change in myosin. Nat Struct Biol. 2003 May;10(5):402–408. doi: 10.1038/nsb916. [DOI] [PubMed] [Google Scholar]
  24. Yengo Christopher M., De La Cruz Enrique M., Chrin Lynn R., Gaffney Donald P., 2nd, Berger Christopher L. Actin-induced closure of the actin-binding cleft of smooth muscle myosin. J Biol Chem. 2002 Apr 16;277(27):24114–24119. doi: 10.1074/jbc.M111253200. [DOI] [PubMed] [Google Scholar]
  25. Yengo Christopher M., Sweeney H. Lee. Functional role of loop 2 in myosin V. Biochemistry. 2004 Mar 9;43(9):2605–2612. doi: 10.1021/bi035510v. [DOI] [PubMed] [Google Scholar]
  26. Zeng Wei, Conibear Paul B., Dickens Jane L., Cowie Ruth A., Wakelin Stuart, Málnási-Csizmadia András, Bagshaw Clive R. Dynamics of actomyosin interactions in relation to the cross-bridge cycle. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1843–1855. doi: 10.1098/rstb.2004.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES