Abstract
Decorated actin provides a model system for studying the strong interaction between actin and myosin. Cryo-energy-filter electron microscopy has recently yielded a 14 A resolution map of rabbit skeletal actin decorated with chicken skeletal S1. The crystal structure of the cross-bridge from skeletal chicken myosin could not be fitted into the three-dimensional electron microscope map without some deformation. However, a newly published structure of the nucleotide-free myosin V cross-bridge, which is apparently already in the strong binding form, can be fitted into the three-dimensional reconstruction without distortion. This supports the notion that nucleotide-free myosin V is an excellent model for strongly bound myosin and allows us to describe the actin-myosin interface. In myosin V the switch 2 element is closed although the lever arm is down (post-power stroke). Therefore, it appears likely that switch 2 does not open very much during the power stroke. The myosin V structure also differs from the chicken skeletal myosin structure in the nucleotide-binding site and the degree of bending of the backbone beta-sheet. These suggest a mechanism for the control of the power stroke by strong actin binding.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
- Conibear Paul B., Bagshaw Clive R., Fajer Piotr G., Kovács Mihály, Málnási-Csizmadia András. Myosin cleft movement and its coupling to actomyosin dissociation. Nat Struct Biol. 2003 Sep 21;10(10):831–835. doi: 10.1038/nsb986. [DOI] [PubMed] [Google Scholar]
- Coureux Pierre-Damien, Wells Amber L., Ménétrey Julie, Yengo Christopher M., Morris Carl A., Sweeney H. Lee, Houdusse Anne. A structural state of the myosin V motor without bound nucleotide. Nature. 2003 Sep 25;425(6956):419–423. doi: 10.1038/nature01927. [DOI] [PubMed] [Google Scholar]
- Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
- Esnouf R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1. [DOI] [PubMed] [Google Scholar]
- Esnouf R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):938–940. doi: 10.1107/s0907444998017363. [DOI] [PubMed] [Google Scholar]
- Falcigno L., Costantini S., D'Auria G., Bruno B. M., Zobeley S., Zanotti G., Paolillo L. Phalloidin synthetic analogues: structural requirements in the interaction with F-actin. Chemistry. 2001 Nov 5;7(21):4665–4673. doi: 10.1002/1521-3765(20011105)7:21<4665::aid-chem4665>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
- Geeves M. A., Conibear P. B. The role of three-state docking of myosin S1 with actin in force generation. Biophys J. 1995 Apr;68(4 Suppl):194S–201S. [PMC free article] [PubMed] [Google Scholar]
- Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
- Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
- Holmes Kenneth C., Angert Isabel, Kull F. Jon, Jahn Werner, Schröder Rasmus R. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature. 2003 Sep 25;425(6956):423–427. doi: 10.1038/nature02005. [DOI] [PubMed] [Google Scholar]
- Joel P. B., Trybus K. M., Sweeney H. L. Two conserved lysines at the 50/20-kDa junction of myosin are necessary for triggering actin activation. J Biol Chem. 2000 Oct 20;276(5):2998–3003. doi: 10.1074/jbc.M006930200. [DOI] [PubMed] [Google Scholar]
- Joel Peteranne B., Sweeney H. Lee, Trybus Kathleen M. Addition of lysines to the 50/20 kDa junction of myosin strengthens weak binding to actin without affecting the maximum ATPase activity. Biochemistry. 2003 Aug 5;42(30):9160–9166. doi: 10.1021/bi034415j. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
- Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
- Otterbein L. R., Graceffa P., Dominguez R. The crystal structure of uncomplexed actin in the ADP state. Science. 2001 Jul 27;293(5530):708–711. doi: 10.1126/science.1059700. [DOI] [PubMed] [Google Scholar]
- Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
- Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
- Reubold Thomas F., Eschenburg Susanne, Becker Andreas, Kull F. Jon, Manstein Dietmar J. A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol. 2003 Sep 21;10(10):826–830. doi: 10.1038/nsb987. [DOI] [PubMed] [Google Scholar]
- Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
- Sweeney H. Lee, Houdusse Anne. The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1829–1841. doi: 10.1098/rstb.2004.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tirion M. M., ben-Avraham D., Lorenz M., Holmes K. C. Normal modes as refinement parameters for the F-actin model. Biophys J. 1995 Jan;68(1):5–12. doi: 10.1016/S0006-3495(95)80156-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao Ming, Reifenberger Jeff G., Wells Amber L., Baldacchino Corry, Chen Li-Qiong, Ge Pinghua, Sweeney H. Lee, Selvin Paul R. An actin-dependent conformational change in myosin. Nat Struct Biol. 2003 May;10(5):402–408. doi: 10.1038/nsb916. [DOI] [PubMed] [Google Scholar]
- Yengo Christopher M., De La Cruz Enrique M., Chrin Lynn R., Gaffney Donald P., 2nd, Berger Christopher L. Actin-induced closure of the actin-binding cleft of smooth muscle myosin. J Biol Chem. 2002 Apr 16;277(27):24114–24119. doi: 10.1074/jbc.M111253200. [DOI] [PubMed] [Google Scholar]
- Yengo Christopher M., Sweeney H. Lee. Functional role of loop 2 in myosin V. Biochemistry. 2004 Mar 9;43(9):2605–2612. doi: 10.1021/bi035510v. [DOI] [PubMed] [Google Scholar]
- Zeng Wei, Conibear Paul B., Dickens Jane L., Cowie Ruth A., Wakelin Stuart, Málnási-Csizmadia András, Bagshaw Clive R. Dynamics of actomyosin interactions in relation to the cross-bridge cycle. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1843–1855. doi: 10.1098/rstb.2004.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]