Abstract
In most current models of muscle contraction there are two translational steps, the working stroke, whereby an attached myosin cross-bridge moves relative to the actin filament, and the repriming step, in which the cross-bridge returns to its original orientation. The development of single molecule methods has allowed a more detailed investigation of the relationship of these mechanical steps to the underlying biochemistry. In the normal adenosine triphosphate cycle, myosin.adenosine diphosphate.phosphate (M.ADP.Pi) binds to actin and moves it by ca. 5 nm on average before the formation of the end product, the rigor actomyosin state. All the other product-like intermediate states tested were found to give no net movement indicating that M.ADP.Pi alone binds in a pre-force state.Myosin states with bound, unhydrolysed nucleoside triphosphates also give no net movement, indicating that these must also bind in a post-force conformation and that the repriming, post- to pre-transition during the forward cycle must take place while the myosin is dissociated from actin. These observations fit in well with the structural model in which the working stroke is aligned to the opening of the switch 2 element of the ATPase site.
Full Text
The Full Text of this article is available as a PDF (753.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cardon J. W., Boyer P. D. The rate of release of ATP from its complex with myosin. Eur J Biochem. 1978 Dec;92(2):443–448. doi: 10.1111/j.1432-1033.1978.tb12765.x. [DOI] [PubMed] [Google Scholar]
- Chalovich J. M., Chock P. B., Eisenberg E. Mechanism of action of troponin . tropomyosin. Inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin. J Biol Chem. 1981 Jan 25;256(2):575–578. [PMC free article] [PubMed] [Google Scholar]
- Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol. 1992;451:247–278. doi: 10.1113/jphysiol.1992.sp019163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg E., Greene L. E. The relation of muscle biochemistry to muscle physiology. Annu Rev Physiol. 1980;42:293–309. doi: 10.1146/annurev.ph.42.030180.001453. [DOI] [PubMed] [Google Scholar]
- Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
- Geeves M. A., Goody R. S., Gutfreund H. Kinetics of acto-S1 interaction as a guide to a model for the crossbridge cycle. J Muscle Res Cell Motil. 1984 Aug;5(4):351–361. doi: 10.1007/BF00818255. [DOI] [PubMed] [Google Scholar]
- Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
- Goody R. S., Hofmann W., Mannherz G. H. The binding constant of ATP to myosin S1 fragment. Eur J Biochem. 1977 Sep;78(2):317–324. doi: 10.1111/j.1432-1033.1977.tb11742.x. [DOI] [PubMed] [Google Scholar]
- Guilford W. H., Dupuis D. E., Kennedy G., Wu J., Patlak J. B., Warshaw D. M. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J. 1997 Mar;72(3):1006–1021. doi: 10.1016/S0006-3495(97)78753-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilber K., Sun Y. B., Irving M. Effects of sarcomere length and temperature on the rate of ATP utilisation by rabbit psoas muscle fibres. J Physiol. 2001 Mar 15;531(Pt 3):771–780. doi: 10.1111/j.1469-7793.2001.0771h.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes Kenneth C., Angert Isabel, Kull F. Jon, Jahn Werner, Schröder Rasmus R. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature. 2003 Sep 25;425(6956):423–427. doi: 10.1038/nature02005. [DOI] [PubMed] [Google Scholar]
- Hopkins S. C., Sabido-David C., Corrie J. E., Irving M., Goldman Y. E. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers. Biophys J. 1998 Jun;74(6):3093–3110. doi: 10.1016/S0006-3495(98)78016-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
- Kishino A., Yanagida T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature. 1988 Jul 7;334(6177):74–76. doi: 10.1038/334074a0. [DOI] [PubMed] [Google Scholar]
- Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
- Marston S., Weber A. The dissociation constant of the actin-heavy meromyosin subfragment-1 complex. Biochemistry. 1975 Aug 26;14(17):3868–3873. doi: 10.1021/bi00688a021. [DOI] [PubMed] [Google Scholar]
- Mehta A. D., Finer J. T., Spudich J. A. Detection of single-molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7927–7931. doi: 10.1073/pnas.94.15.7927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millar N. C., Geeves M. A. The limiting rate of the ATP-mediated dissociation of actin from rabbit skeletal muscle myosin subfragment 1. FEBS Lett. 1983 Aug 22;160(1-2):141–148. doi: 10.1016/0014-5793(83)80954-5. [DOI] [PubMed] [Google Scholar]
- Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
- Molloy J. E., Burns J. E., Sparrow J. C., Tregear R. T., Kendrick-Jones J., White D. C. Single-molecule mechanics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers. Biophys J. 1995 Apr;68(4 Suppl):298S–305S. [PMC free article] [PubMed] [Google Scholar]
- Ranatunga K. W., Coupland Moira E., Mutungi G. An asymmetry in the phosphate dependence of tension transients induced by length perturbation in mammalian (rabbit psoas) muscle fibres. J Physiol. 2002 Aug 1;542(Pt 3):899–910. doi: 10.1113/jphysiol.2002.019471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reubold Thomas F., Eschenburg Susanne, Becker Andreas, Kull F. Jon, Manstein Dietmar J. A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol. 2003 Sep 21;10(10):826–830. doi: 10.1038/nsb987. [DOI] [PubMed] [Google Scholar]
- Sleep J. A., Hutton R. L. Actin mediated release of ATP from a myosin-ATP complex. Biochemistry. 1978 Dec 12;17(25):5423–5430. doi: 10.1021/bi00618a016. [DOI] [PubMed] [Google Scholar]
- Sleep J. A., Hutton R. L. Exchange between inorganic phosphate and adenosine 5'-triphosphate in the medium by actomyosin subfragment 1. Biochemistry. 1980 Apr 1;19(7):1276–1283. doi: 10.1021/bi00548a002. [DOI] [PubMed] [Google Scholar]
- Smith D. A., Steffen W., Simmons R. M., Sleep J. Hidden-Markov methods for the analysis of single-molecule actomyosin displacement data: the variance-Hidden-Markov method. Biophys J. 2001 Nov;81(5):2795–2816. doi: 10.1016/S0006-3495(01)75922-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith David A., Sleep John. Mechanokinetics of rapid tension recovery in muscle: the Myosin working stroke is followed by a slower release of phosphate. Biophys J. 2004 Jul;87(1):442–456. doi: 10.1529/biophysj.103.037788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steffen Walter, Smith David, Sleep John. The working stroke upon myosin-nucleotide complexes binding to actin. Proc Natl Acad Sci U S A. 2003 May 15;100(11):6434–6439. doi: 10.1073/pnas.1231998100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki Y., Yasunaga T., Ohkura R., Wakabayashi T., Sutoh K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature. 1998 Nov 26;396(6709):380–383. doi: 10.1038/24640. [DOI] [PubMed] [Google Scholar]
- Taylor E. W. Kinetic studies on the association and dissociation of myosin subfragment 1 and actin. J Biol Chem. 1991 Jan 5;266(1):294–302. [PubMed] [Google Scholar]
- Urbanke C., Wray J. A fluorescence temperature-jump study of conformational transitions in myosin subfragment 1. Biochem J. 2001 Aug 15;358(Pt 1):165–173. doi: 10.1042/0264-6021:3580165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veigel C., Bartoo M. L., White D. C., Sparrow J. C., Molloy J. E. The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J. 1998 Sep;75(3):1424–1438. doi: 10.1016/S0006-3495(98)74061-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakelin Stuart, Conibear Paul B., Woolley Robert J., Floyd David N., Bagshaw Clive R., Kovács Mihály, Málnási-Csizmadia András. Engineering Dictyostelium discoideum myosin II for the introduction of site-specific fluorescence probes. J Muscle Res Cell Motil. 2002;23(7-8):673–683. doi: 10.1023/a:1024411208497. [DOI] [PubMed] [Google Scholar]
- White H. D., Taylor E. W. Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry. 1976 Dec 28;15(26):5818–5826. doi: 10.1021/bi00671a020. [DOI] [PubMed] [Google Scholar]
- Wray John, Jahn Werner. Gamma-amido-ATP stabilizes a high-fluorescence state of myosin subfragment 1. FEBS Lett. 2002 May 8;518(1-3):97–100. doi: 10.1016/s0014-5793(02)02654-6. [DOI] [PubMed] [Google Scholar]
- Xu S., Offer G., Gu J., White H. D., Yu L. C. Temperature and ligand dependence of conformation and helical order in myosin filaments. Biochemistry. 2003 Jan 21;42(2):390–401. doi: 10.1021/bi026085t. [DOI] [PubMed] [Google Scholar]