Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Dec 29;359(1452):1829–1841. doi: 10.1098/rstb.2004.1576

The motor mechanism of myosin V: insights for muscle contraction.

H Lee Sweeney 1, Anne Houdusse 1
PMCID: PMC1693472  PMID: 15647159

Abstract

It is 50 years since the sliding of actin and myosin filaments was proposed as the basis of force generation and shortening in striated muscle. Although this is now generally accepted, the detailed molecular mechanism of how myosin uses adenosine triphosphate to generate force during its cyclic interaction with actin is only now being unravelled. New insights have come from the unconventional myosins, especially myosin V. Myosin V is kinetically tuned to allow movement on actin filaments as a single molecule, which has led to new kinetic, mechanical and structural data that have filled in missing pieces of the actomyosin-chemo-mechanical transduction puzzle.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batters Christopher, Wallace Mark I., Coluccio Lynne M., Molloy Justin E. A model of stereocilia adaptation based on single molecule mechanical studies of myosin I. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1895–1905. doi: 10.1098/rstb.2004.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer C. B., Kuhlman P. A., Bagshaw C. R., Rayment I. X-ray crystal structure and solution fluorescence characterization of Mg.2'(3')-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domain. J Mol Biol. 1997 Dec 5;274(3):394–407. doi: 10.1006/jmbi.1997.1325. [DOI] [PubMed] [Google Scholar]
  3. Burgess Stan, Walker Matt, Wang Fei, Sellers James R., White Howard D., Knight Peter J., Trinick John. The prepower stroke conformation of myosin V. J Cell Biol. 2002 Dec 23;159(6):983–991. doi: 10.1083/jcb.200208172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAIN D. F., DAVIES R. E. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun. 1962 Aug 7;8:361–366. doi: 10.1016/0006-291x(62)90008-6. [DOI] [PubMed] [Google Scholar]
  5. Coureux Pierre-Damien, Sweeney H. Lee, Houdusse Anne. Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J. 2004 Oct 28;23(23):4527–4537. doi: 10.1038/sj.emboj.7600458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coureux Pierre-Damien, Wells Amber L., Ménétrey Julie, Yengo Christopher M., Morris Carl A., Sweeney H. Lee, Houdusse Anne. A structural state of the myosin V motor without bound nucleotide. Nature. 2003 Sep 25;425(6956):419–423. doi: 10.1038/nature01927. [DOI] [PubMed] [Google Scholar]
  7. Cremo C. R., Geeves M. A. Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry. 1998 Feb 17;37(7):1969–1978. doi: 10.1021/bi9722406. [DOI] [PubMed] [Google Scholar]
  8. Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol. 1992;451:247–278. doi: 10.1113/jphysiol.1992.sp019163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  10. Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
  11. Forkey Joseph N., Quinlan Margot E., Shaw M. Alexander, Corrie John E. T., Goldman Yale E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature. 2003 Mar 27;422(6930):399–404. doi: 10.1038/nature01529. [DOI] [PubMed] [Google Scholar]
  12. Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
  13. Gollub J., Cremo C. R., Cooke R. ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nat Struct Biol. 1996 Sep;3(9):796–802. doi: 10.1038/nsb0996-796. [DOI] [PubMed] [Google Scholar]
  14. HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
  15. HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  17. Holmes K. C. Muscle proteins--their actions and interactions. Curr Opin Struct Biol. 1996 Dec;6(6):781–789. doi: 10.1016/s0959-440x(96)80008-x. [DOI] [PubMed] [Google Scholar]
  18. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  19. Holmes K. C., Schröder R. R., Sweeney H. L., Houdusse Anne. The structure of the rigor complex and its implications for the power stroke. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1819–1828. doi: 10.1098/rstb.2004.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holmes Kenneth C., Angert Isabel, Kull F. Jon, Jahn Werner, Schröder Rasmus R. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature. 2003 Sep 25;425(6956):423–427. doi: 10.1038/nature02005. [DOI] [PubMed] [Google Scholar]
  21. Houdusse A., Kalabokis V. N., Himmel D., Szent-Györgyi A. G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459–470. doi: 10.1016/s0092-8674(00)80756-4. [DOI] [PubMed] [Google Scholar]
  22. Houdusse A., Sweeney H. L. Myosin motors: missing structures and hidden springs. Curr Opin Struct Biol. 2001 Apr;11(2):182–194. doi: 10.1016/s0959-440x(00)00188-3. [DOI] [PubMed] [Google Scholar]
  23. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  24. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  25. Jontes J. D., Ostap E. M., Pollard T. D., Milligan R. A. Three-dimensional structure of Acanthamoeba castellanii myosin-IB (MIB) determined by cryoelectron microscopy of decorated actin filaments. J Cell Biol. 1998 Apr 6;141(1):155–162. doi: 10.1083/jcb.141.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jontes J. D., Wilson-Kubalek E. M., Milligan R. A. A 32 degree tail swing in brush border myosin I on ADP release. Nature. 1995 Dec 14;378(6558):751–753. doi: 10.1038/378751a0. [DOI] [PubMed] [Google Scholar]
  27. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  28. Kollmar Martin, Dürrwang Ulrike, Kliche Werner, Manstein Dietmar J., Kull F. Jon. Crystal structure of the motor domain of a class-I myosin. EMBO J. 2002 Jun 3;21(11):2517–2525. doi: 10.1093/emboj/21.11.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lawson J. David, Pate Edward, Rayment Ivan, Yount Ralph G. Molecular dynamics analysis of structural factors influencing back door pi release in myosin. Biophys J. 2004 Jun;86(6):3794–3803. doi: 10.1529/biophysj.103.037390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lorenz M., Popp D., Holmes K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol. 1993 Dec 5;234(3):826–836. doi: 10.1006/jmbi.1993.1628. [DOI] [PubMed] [Google Scholar]
  31. Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
  32. Manstein Dietmar J. Molecular engineering of myosin. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1907–1912. doi: 10.1098/rstb.2004.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mehta A. D., Rock R. S., Rief M., Spudich J. A., Mooseker M. S., Cheney R. E. Myosin-V is a processive actin-based motor. Nature. 1999 Aug 5;400(6744):590–593. doi: 10.1038/23072. [DOI] [PubMed] [Google Scholar]
  34. Moore Jeffrey R., Krementsova Elena B., Trybus Kathleen M., Warshaw David M. Does the myosin V neck region act as a lever? J Muscle Res Cell Motil. 2004;25(1):29–35. doi: 10.1023/b:jure.0000021394.48560.71. [DOI] [PubMed] [Google Scholar]
  35. Nyitrai Miklós, Geeves Michael A. Adenosine diphosphate and strain sensitivity in myosin motors. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1867–1877. doi: 10.1098/rstb.2004.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Otterbein L. R., Graceffa P., Dominguez R. The crystal structure of uncomplexed actin in the ADP state. Science. 2001 Jul 27;293(5530):708–711. doi: 10.1126/science.1059700. [DOI] [PubMed] [Google Scholar]
  37. Park Jun Wuk, Doi Yoshiharu, Iwata Tadahisa. Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) blends. Biomacromolecules. 2004 Jul-Aug;5(4):1557–1566. doi: 10.1021/bm049905l. [DOI] [PubMed] [Google Scholar]
  38. Pollard T. D., Korn E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973 Jul 10;248(13):4682–4690. [PubMed] [Google Scholar]
  39. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  40. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  41. Rosenfeld S. S., Xing J., Whitaker M., Cheung H. C., Brown F., Wells A., Milligan R. A., Sweeney H. L. Kinetic and spectroscopic evidence for three actomyosin:ADP states in smooth muscle. J Biol Chem. 2000 Aug 18;275(33):25418–25426. doi: 10.1074/jbc.M002685200. [DOI] [PubMed] [Google Scholar]
  42. Schröder R. R., Manstein D. J., Jahn W., Holden H., Rayment I., Holmes K. C., Spudich J. A. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature. 1993 Jul 8;364(6433):171–174. doi: 10.1038/364171a0. [DOI] [PubMed] [Google Scholar]
  43. Sleep J. A., Hutton R. L. Exchange between inorganic phosphate and adenosine 5'-triphosphate in the medium by actomyosin subfragment 1. Biochemistry. 1980 Apr 1;19(7):1276–1283. doi: 10.1021/bi00548a002. [DOI] [PubMed] [Google Scholar]
  44. Uyeda T. Q., Abramson P. D., Spudich J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4459–4464. doi: 10.1073/pnas.93.9.4459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Veigel Claudia, Wang Fei, Bartoo Marc L., Sellers James R., Molloy Justin E. The gated gait of the processive molecular motor, myosin V. Nat Cell Biol. 2002 Jan;4(1):59–65. doi: 10.1038/ncb732. [DOI] [PubMed] [Google Scholar]
  46. Volkmann N., Hanein D., Ouyang G., Trybus K. M., DeRosier D. J., Lowey S. Evidence for cleft closure in actomyosin upon ADP release. Nat Struct Biol. 2000 Dec;7(12):1147–1155. doi: 10.1038/82008. [DOI] [PubMed] [Google Scholar]
  47. Volkmann Niels, Ouyang Greta, Trybus Kathleen M., DeRosier David J., Lowey Susan, Hanein Dorit. Myosin isoforms show unique conformations in the actin-bound state. Proc Natl Acad Sci U S A. 2003 Feb 28;100(6):3227–3232. doi: 10.1073/pnas.0536510100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Walker M. L., Burgess S. A., Sellers J. R., Wang F., Hammer J. A., 3rd, Trinick J., Knight P. J. Two-headed binding of a processive myosin to F-actin. Nature. 2000 Jun 15;405(6788):804–807. doi: 10.1038/35015592. [DOI] [PubMed] [Google Scholar]
  49. Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]
  50. Xiao Ming, Reifenberger Jeff G., Wells Amber L., Baldacchino Corry, Chen Li-Qiong, Ge Pinghua, Sweeney H. Lee, Selvin Paul R. An actin-dependent conformational change in myosin. Nat Struct Biol. 2003 May;10(5):402–408. doi: 10.1038/nsb916. [DOI] [PubMed] [Google Scholar]
  51. Yildiz Ahmet, Forkey Joseph N., McKinney Sean A., Ha Taekjip, Goldman Yale E., Selvin Paul R. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science. 2003 Jun 5;300(5628):2061–2065. doi: 10.1126/science.1084398. [DOI] [PubMed] [Google Scholar]
  52. Yount R. G., Lawson D., Rayment I. Is myosin a "back door" enzyme? Biophys J. 1995 Apr;68(4 Suppl):44S–49S. [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES