Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Dec 29;359(1452):1921–1930. doi: 10.1098/rstb.2004.1562

Smooth muscle myosin: regulation and properties.

Avril V Somlyo 1, Alexander S Khromov 1, Martin R Webb 1, Michael A Ferenczi 1, David R Trentham 1, Zhen-He He 1, Sitong Sheng 1, Zhifeng Shao 1, Andrew P Somlyo 1
PMCID: PMC1693473  PMID: 15647168

Abstract

The relationship of the biochemical states to the mechanical events in contraction of smooth muscle cross-bridges is reviewed. These studies use direct measurements of the kinetics of Pi and ADP release. The rate of release of Pi from thiophosphorylated cycling cross-bridges held isometric was biphasic with turnovers of 1.8 s-1 and 0.3 s-1, reflecting properties and forces directly acting on cross-bridges through mechanisms such as positive strain and inhibition by high-affinity MgADP binding. Fluorescent transients reporting release of an ADP analogue 3'-deac-edaADP were significantly faster in phasic than in tonic smooth muscles. Thiophosphorylation of myosin regulatory light chains (RLCs) increased and positive strain decreased the release rate around twofold. The rates of ADP release from rigor cross-bridges and the steady-state Pi release from cycling isometric cross-bridges are similar, indicating that the ADP-release step or an isomerization preceding it may limit the ATPase rate. Thus ADP release in phasic and tonic smooth muscles is a regulated step with strain- and dephosphorylation-dependence. High affinity of cross-bridges for ADP and slow ADP release prolong the fraction of the duty cycle occupied by strongly bound AM.ADP state(s) and contribute to the high economy of force that is characteristic of smooth muscle. RLC thiophosphorylation led to structural changes in smooth muscle cross-bridges consistent with our findings that thiophosphorylation and strain modulate product release.

Full Text

The Full Text of this article is available as a PDF (409.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton F. T., Somlyo A. V., Somlyo A. P. The contractile apparatus of vascular smooth muscle: intermediate high voltage stereo electron microscopy. J Mol Biol. 1975 Oct 15;98(1):17–29. doi: 10.1016/s0022-2836(75)80098-2. [DOI] [PubMed] [Google Scholar]
  2. Bauer C. B., Kuhlman P. A., Bagshaw C. R., Rayment I. X-ray crystal structure and solution fluorescence characterization of Mg.2'(3')-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domain. J Mol Biol. 1997 Dec 5;274(3):394–407. doi: 10.1006/jmbi.1997.1325. [DOI] [PubMed] [Google Scholar]
  3. Berger B., Wilson D. B., Wolf E., Tonchev T., Milla M., Kim P. S. Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8259–8263. doi: 10.1073/pnas.92.18.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bond M., Somlyo A. V. Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol. 1982 Nov;95(2 Pt 1):403–413. doi: 10.1083/jcb.95.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Butler T. M., Siegman M. J. Control of cross-bridge cycling by myosin light chain phosphorylation in mammalian smooth muscle. Acta Physiol Scand. 1998 Dec;164(4):389–400. doi: 10.1046/j.1365-201X.1998.00450.x. [DOI] [PubMed] [Google Scholar]
  6. Butler T. M., Siegman M. J., Mooers S. U. Slowing of cross-bridge cycling in smooth muscle without evidence of an internal load. Am J Physiol. 1986 Dec;251(6 Pt 1):C945–C950. doi: 10.1152/ajpcell.1986.251.6.C945. [DOI] [PubMed] [Google Scholar]
  7. Chaen S., Shirakawa I., Bagshaw C. R., Sugi H. Measurement of nucleotide release kinetics in single skeletal muscle myofibrils during isometric and isovelocity contractions using fluorescence microscopy. Biophys J. 1997 Oct;73(4):2033–2042. doi: 10.1016/S0006-3495(97)78233-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cremo C. R., Geeves M. A. Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry. 1998 Feb 17;37(7):1969–1978. doi: 10.1021/bi9722406. [DOI] [PubMed] [Google Scholar]
  9. Dantzig J. A., Barsotti R. J., Manz S., Sweeney H. L., Goldman Y. E. The ADP release step of the smooth muscle cross-bridge cycle is not directly associated with force generation. Biophys J. 1999 Jul;77(1):386–397. doi: 10.1016/S0006-3495(99)76897-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dillon P. F., Aksoy M. O., Driska S. P., Murphy R. A. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science. 1981 Jan 30;211(4481):495–497. doi: 10.1126/science.6893872. [DOI] [PubMed] [Google Scholar]
  11. Driska S. P., Stein P. G., Porter R. Myosin dephosphorylation during rapid relaxation of hog carotid artery smooth muscle. Am J Physiol. 1989 Feb;256(2 Pt 1):C315–C321. doi: 10.1152/ajpcell.1989.256.2.C315. [DOI] [PubMed] [Google Scholar]
  12. Eden D., Highsmith S. Light chain-dependent myosin structural dynamics in solution investigated by transient electrical birefringence. Biophys J. 1997 Aug;73(2):952–958. doi: 10.1016/S0006-3495(97)78127-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fenn W. O. A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol. 1923 Dec 28;58(2-3):175–203. doi: 10.1113/jphysiol.1923.sp002115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gollub J., Cremo C. R., Cooke R. ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nat Struct Biol. 1996 Sep;3(9):796–802. doi: 10.1038/nsb0996-796. [DOI] [PubMed] [Google Scholar]
  15. Harrington W. F. A mechanochemical mechanism for muscle contraction. Proc Natl Acad Sci U S A. 1971 Mar;68(3):685–689. doi: 10.1073/pnas.68.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. He Z. H., Ferenczi M. A., Brune M., Trentham D. R., Webb M. R., Somlyo A. P., Somlyo A. V. Time-resolved measurements of phosphate release by cycling cross-bridges in portal vein smooth muscle. Biophys J. 1998 Dec;75(6):3031–3040. doi: 10.1016/S0006-3495(98)77744-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Himpens B., Matthijs G., Somlyo A. V., Butler T. M., Somlyo A. P. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle. J Gen Physiol. 1988 Dec;92(6):713–729. doi: 10.1085/jgp.92.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hiratsuka T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim Biophys Acta. 1983 Feb 15;742(3):496–508. doi: 10.1016/0167-4838(83)90267-4. [DOI] [PubMed] [Google Scholar]
  19. Horiuti K., Somlyo A. V., Goldman Y. E., Somlyo A. P. Kinetics of contraction initiated by flash photolysis of caged adenosine triphosphate in tonic and phasic smooth muscles. J Gen Physiol. 1989 Oct;94(4):769–781. doi: 10.1085/jgp.94.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Houdusse A., Silver M., Cohen C. A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Structure. 1996 Dec 15;4(12):1475–1490. doi: 10.1016/s0969-2126(96)00154-2. [DOI] [PubMed] [Google Scholar]
  21. Iino M. Tension responses of chemically skinned fibre bundles of the guinea-pig taenia caeci under varied ionic environments. J Physiol. 1981 Nov;320:449–467. doi: 10.1113/jphysiol.1981.sp013961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Khromov A. S., Somlyo A. P., Somlyo A. V. Photolytic release of MgADP reduces rigor force in smooth muscle. Biophys J. 2001 Apr;80(4):1905–1914. doi: 10.1016/S0006-3495(01)76160-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Khromov A. S., Somlyo A. V., Somlyo A. P. Nucleotide binding by actomyosin as a determinant of relaxation kinetics of rabbit phasic and tonic smooth muscle. J Physiol. 1996 May 1;492(Pt 3):669–673. doi: 10.1113/jphysiol.1996.sp021336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Khromov A. S., Somlyo A. V., Somlyo A. P. Thiophosphorylation of myosin light chain increases rigor stiffness of rabbit smooth muscle. J Physiol. 1998 Oct 15;512(Pt 2):345–350. doi: 10.1111/j.1469-7793.1998.345be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Khromov A., Somlyo A. V., Somlyo A. P. MgADP promotes a catch-like state developed through force-calcium hysteresis in tonic smooth muscle. Biophys J. 1998 Oct;75(4):1926–1934. doi: 10.1016/S0006-3495(98)77633-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Khromov A., Somlyo A. V., Trentham D. R., Zimmermann B., Somlyo A. P. The role of MgADP in force maintenance by dephosphorylated cross-bridges in smooth muscle: a flash photolysis study. Biophys J. 1995 Dec;69(6):2611–2622. doi: 10.1016/S0006-3495(95)80132-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Khromov Alexander S., Webb Martin R., Ferenczi Michael A., Trentham David R., Somlyo Andrew P., Somlyo Avril V. Myosin regulatory light chain phosphorylation and strain modulate adenosine diphosphate release from smooth muscle Myosin. Biophys J. 2004 Apr;86(4):2318–2328. doi: 10.1016/S0006-3495(04)74289-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lauzon A. M., Tyska M. J., Rovner A. S., Freyzon Y., Warshaw D. M., Trybus K. M. A 7-amino-acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap. J Muscle Res Cell Motil. 1998 Nov;19(8):825–837. doi: 10.1023/a:1005489501357. [DOI] [PubMed] [Google Scholar]
  29. Levine R. J., Kensler R. W., Yang Z., Sweeney H. L. Myosin regulatory light chain phosphorylation and the production of functionally significant changes in myosin head arrangement on striated muscle thick filaments. Biophys J. 1995 Apr;68(4 Suppl):224S–224S. [PMC free article] [PubMed] [Google Scholar]
  30. Malmqvist U., Arner A. Correlation between isoform composition of the 17 kDa myosin light chain and maximal shortening velocity in smooth muscle. Pflugers Arch. 1991 Jul;418(6):523–530. doi: 10.1007/BF00370566. [DOI] [PubMed] [Google Scholar]
  31. Marston S. B., Taylor E. W. Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles. J Mol Biol. 1980 Jun 5;139(4):573–600. doi: 10.1016/0022-2836(80)90050-9. [DOI] [PubMed] [Google Scholar]
  32. Moreland R. S., Murphy R. A. Determinants of Ca2+-dependent stress maintenance in skinned swine carotid media. Am J Physiol. 1986 Dec;251(6 Pt 1):C892–C903. doi: 10.1152/ajpcell.1986.251.6.C892. [DOI] [PubMed] [Google Scholar]
  33. Nishiye E., Somlyo A. V., Török K., Somlyo A. P. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. J Physiol. 1993 Jan;460:247–271. doi: 10.1113/jphysiol.1993.sp019470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Paul R. J. Smooth muscle energetics. Annu Rev Physiol. 1989;51:331–349. doi: 10.1146/annurev.ph.51.030189.001555. [DOI] [PubMed] [Google Scholar]
  35. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  36. Rice R. V., McManus G. M., Devine O. F., Somlyo A. P. Regular organization of thick filaments in mammalian smooth muscle. Nat New Biol. 1971 Jun 23;231(25):242–243. doi: 10.1038/newbio231242a0. [DOI] [PubMed] [Google Scholar]
  37. Siegman M. J., Butler T. M., Mooers S. U., Davies R. E. Chemical energetics of force development, force maintenance, and relaxation in mammalian smooth muscle. J Gen Physiol. 1980 Nov;76(5):609–629. doi: 10.1085/jgp.76.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Siemankowski R. F., Wiseman M. O., White H. D. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci U S A. 1985 Feb;82(3):658–662. doi: 10.1073/pnas.82.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Somlyo A. P., Devine C. E., Somlyo A. V. Thick filaments in unstretched mammalian smooth muscle. Nature. 1971 Oct 13;233(5320):218–219. [PubMed] [Google Scholar]
  40. Somlyo A. P. Myosin isoforms in smooth muscle: how may they affect function and structure? J Muscle Res Cell Motil. 1993 Dec;14(6):557–563. doi: 10.1007/BF00141552. [DOI] [PubMed] [Google Scholar]
  41. Somlyo A. V., Goldman Y. E., Fujimori T., Bond M., Trentham D. R., Somlyo A. P. Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study. J Gen Physiol. 1988 Feb;91(2):165–192. doi: 10.1085/jgp.91.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Somlyo Andrew P., Somlyo Avril V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003 Oct;83(4):1325–1358. doi: 10.1152/physrev.00023.2003. [DOI] [PubMed] [Google Scholar]
  43. Sweeney H. L. Regulation and tuning of smooth muscle myosin. Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 3):S95–S99. doi: 10.1164/ajrccm.158.supplement_2.13tac400. [DOI] [PubMed] [Google Scholar]
  44. Veigel Claudia, Molloy Justin E., Schmitz Stephan, Kendrick-Jones John. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat Cell Biol. 2003 Oct 26;5(11):980–986. doi: 10.1038/ncb1060. [DOI] [PubMed] [Google Scholar]
  45. Vyas T. B., Mooers S. U., Narayan S. R., Witherell J. C., Siegman M. J., Butler T. M. Cooperative activation of myosin by light chain phosphorylation in permeabilized smooth muscle. Am J Physiol. 1992 Jul;263(1 Pt 1):C210–C219. doi: 10.1152/ajpcell.1992.263.1.C210. [DOI] [PubMed] [Google Scholar]
  46. Webb M. R., Corrie J. E. Fluorescent coumarin-labeled nucleotides to measure ADP release from actomyosin. Biophys J. 2001 Sep;81(3):1562–1569. doi: 10.1016/S0006-3495(01)75810-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. West Timothy G., Curtin N. A., Ferenczi Michael A., He Zhen-He, Sun Yin-Biao, Irving Malcolm, Woledge Roger C. Actomyosin energy turnover declines while force remains constant during isometric muscle contraction. J Physiol. 2003 Oct 17;555(Pt 1):27–43. doi: 10.1113/jphysiol.2003.040089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]
  49. Yanagisawa M., Hamada Y., Katsuragawa Y., Imamura M., Mikawa T., Masaki T. Complete primary structure of vertebrate smooth muscle myosin heavy chain deduced from its complementary DNA sequence. Implications on topography and function of myosin. J Mol Biol. 1987 Nov 20;198(2):143–157. doi: 10.1016/0022-2836(87)90302-0. [DOI] [PubMed] [Google Scholar]
  50. Zhang Y., Shao Z., Somlyo A. P., Somlyo A. V. Cryo-atomic force microscopy of smooth muscle myosin. Biophys J. 1997 Mar;72(3):1308–1318. doi: 10.1016/S0006-3495(97)78777-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES