Abstract
We have used an optical tweezers-based apparatus to perform single molecule mechanical experiments using the unconventional myosins, Myo1b and Myo1c. The single-headed nature and slow ATPase kinetics of these myosins make them ideal for detailed studies of the molecular mechanism of force generation by acto-myosin. Myo1c exhibits several features that have not been seen using fast skeletal muscle myosin II. (i) The working stroke occurs in two, distinct phases, producing an initial 3 nm and then a further 1.5 nm of movement. (ii) Two types of binding interaction were observed: short-lived ATP-independent binding events that produced no movement and longer-lived, ATP-dependent events that produced a full working stroke. The stiffness of both types of interaction was similar. (iii) In a new type of experiment, using feedback to apply controlled displacements to a single acto-myosin cross-bridge, we found abrupt changes in force during attachment of the acto-Myo1b cross-bridge, a result that is consistent with the classical 'T2' behaviour of single muscle fibres. Given that these myosins might exhibit the classical T2 behaviour, we propose a new model to explain the slow phase of sensory adaptation of the hair cells of the inner ear.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balish M. F., Moeller E. F., 3rd, Coluccio L. M. Overlapping distribution of the 130- and 110-kDa myosin I isoforms on rat liver membranes. Arch Biochem Biophys. 1999 Oct 15;370(2):285–293. doi: 10.1006/abbi.1999.1409. [DOI] [PubMed] [Google Scholar]
- Batters Christopher, Arthur Christopher P., Lin Abel, Porter Jessica, Geeves Michael A., Milligan Ronald A., Molloy Justin E., Coluccio Lynne M. Myo1c is designed for the adaptation response in the inner ear. EMBO J. 2004 Mar 11;23(7):1433–1440. doi: 10.1038/sj.emboj.7600169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bose Avirup, Guilherme Adilson, Robida Stacey I., Nicoloro Sarah M. C., Zhou Qiong L., Jiang Zhen Y., Pomerleau Darcy P., Czech Michael P. Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature. 2002 Dec 19;420(6917):821–824. doi: 10.1038/nature01246. [DOI] [PubMed] [Google Scholar]
- Brenner B., Chalovich J. M., Greene L. E., Eisenberg E., Schoenberg M. Stiffness of skinned rabbit psoas fibers in MgATP and MgPPi solution. Biophys J. 1986 Oct;50(4):685–691. doi: 10.1016/S0006-3495(86)83509-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bustamante C., Marko J. F., Siggia E. D., Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994 Sep 9;265(5178):1599–1600. doi: 10.1126/science.8079175. [DOI] [PubMed] [Google Scholar]
- Coluccio L. M., Conaty C. Myosin-I in mammalian liver. Cell Motil Cytoskeleton. 1993;24(3):189–199. doi: 10.1002/cm.970240306. [DOI] [PubMed] [Google Scholar]
- Cordonnier M. N., Dauzonne D., Louvard D., Coudrier E. Actin filaments and myosin I alpha cooperate with microtubules for the movement of lysosomes. Mol Biol Cell. 2001 Dec;12(12):4013–4029. doi: 10.1091/mbc.12.12.4013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corey D. P., Hudspeth A. J. Analysis of the microphonic potential of the bullfrog's sacculus. J Neurosci. 1983 May;3(5):942–961. doi: 10.1523/JNEUROSCI.03-05-00942.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cremo C. R., Geeves M. A. Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry. 1998 Feb 17;37(7):1969–1978. doi: 10.1021/bi9722406. [DOI] [PubMed] [Google Scholar]
- Diefenbach Thomas J., Latham Vaughan M., Yimlamai Dean, Liu Canwen A., Herman Ira M., Jay Daniel G. Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol. 2002 Sep 30;158(7):1207–1217. doi: 10.1083/jcb.200202028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dupuis D. E., Guilford W. H., Wu J., Warshaw D. M. Actin filament mechanics in the laser trap. J Muscle Res Cell Motil. 1997 Feb;18(1):17–30. doi: 10.1023/a:1018672631256. [DOI] [PubMed] [Google Scholar]
- Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
- García J. A., Yee A. G., Gillespie P. G., Corey D. P. Localization of myosin-Ibeta near both ends of tip links in frog saccular hair cells. J Neurosci. 1998 Nov 1;18(21):8637–8647. doi: 10.1523/JNEUROSCI.18-21-08637.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie P. G., Albanesi J. P., Bahler M., Bement W. M., Berg J. S., Burgess D. R., Burnside B., Cheney R. E., Corey D. P., Coudrier E. Myosin-I nomenclature. J Cell Biol. 2001 Nov 26;155(5):703–704. doi: 10.1083/jcb.200110032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie P. G., Wagner M. C., Hudspeth A. J. Identification of a 120 kd hair-bundle myosin located near stereociliary tips. Neuron. 1993 Oct;11(4):581–594. doi: 10.1016/0896-6273(93)90071-x. [DOI] [PubMed] [Google Scholar]
- Gillespie Peter G. Myosin I and adaptation of mechanical transduction by the inner ear. Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1945–1951. doi: 10.1098/rstb.2004.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glowatzki Elisabeth, Fuchs Paul A. Transmitter release at the hair cell ribbon synapse. Nat Neurosci. 2002 Feb;5(2):147–154. doi: 10.1038/nn796. [DOI] [PubMed] [Google Scholar]
- Holt Jeffrey R., Gillespie Susan K. H., Provance D. William, Shah Kavita, Shokat Kevan M., Corey David P., Mercer John A., Gillespie Peter G. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell. 2002 Feb 8;108(3):371–381. doi: 10.1016/s0092-8674(02)00629-3. [DOI] [PubMed] [Google Scholar]
- Howard J., Hudspeth A. J. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron. 1988 May;1(3):189–199. doi: 10.1016/0896-6273(88)90139-0. [DOI] [PubMed] [Google Scholar]
- Howard J., Hudspeth A. J. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc Natl Acad Sci U S A. 1987 May;84(9):3064–3068. doi: 10.1073/pnas.84.9.3064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
- Jacobs R. A., Hudspeth A. J. Ultrastructural correlates of mechanoelectrical transduction in hair cells of the bullfrog's internal ear. Cold Spring Harb Symp Quant Biol. 1990;55:547–561. doi: 10.1101/sqb.1990.055.01.053. [DOI] [PubMed] [Google Scholar]
- Kishino A., Yanagida T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature. 1988 Jul 7;334(6177):74–76. doi: 10.1038/334074a0. [DOI] [PubMed] [Google Scholar]
- Kron S. J., Spudich J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6272–6276. doi: 10.1073/pnas.83.17.6272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kros C. J., Marcotti W., van Netten S. M., Self T. J., Libby R. T., Brown S. D. M., Richardson G. P., Steel K. P. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci. 2002 Jan;5(1):41–47. doi: 10.1038/nn784. [DOI] [PubMed] [Google Scholar]
- Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
- Molloy J. E. Optical chopsticks: digital synthesis of multiple optical traps. Methods Cell Biol. 1998;55:205–216. doi: 10.1016/s0091-679x(08)60410-0. [DOI] [PubMed] [Google Scholar]
- Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
- Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
- Ruppert C., Kroschewski R., Bähler M. Identification, characterization and cloning of myr 1, a mammalian myosin-I. J Cell Biol. 1993 Mar;120(6):1393–1403. doi: 10.1083/jcb.120.6.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siemens Jan, Lillo Concepcion, Dumont Rachel A., Reynolds Anna, Williams David S., Gillespie Peter G., Müller Ulrich. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature. 2004 Mar 31;428(6986):950–955. doi: 10.1038/nature02483. [DOI] [PubMed] [Google Scholar]
- Sleep J. A., Hutton R. L. Actin mediated release of ATP from a myosin-ATP complex. Biochemistry. 1978 Dec 12;17(25):5423–5430. doi: 10.1021/bi00618a016. [DOI] [PubMed] [Google Scholar]
- Steffen Walter, Smith David, Sleep John. The working stroke upon myosin-nucleotide complexes binding to actin. Proc Natl Acad Sci U S A. 2003 May 15;100(11):6434–6439. doi: 10.1073/pnas.1231998100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Söllner Christian, Rauch Gerd-Jörg, Siemens Jan, Geisler Robert, Schuster Stephan C., Müller Ulrich, Nicolson Teresa, Tübingen 2000 Screen Consortium Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature. 2004 Mar 31;428(6986):955–959. doi: 10.1038/nature02484. [DOI] [PubMed] [Google Scholar]
- Trentham D. R. The twelfth Colworth Medal lecture. The adenosine triphosphatase reactions of myosin and actomyosin and their relation to energy transduction in muscle. Biochem Soc Trans. 1977;5(1):5–22. doi: 10.1042/bst0050005. [DOI] [PubMed] [Google Scholar]
- Veigel C., Bartoo M. L., White D. C., Sparrow J. C., Molloy J. E. The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J. 1998 Sep;75(3):1424–1438. doi: 10.1016/S0006-3495(98)74061-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veigel C., Coluccio L. M., Jontes J. D., Sparrow J. C., Milligan R. A., Molloy J. E. The motor protein myosin-I produces its working stroke in two steps. Nature. 1999 Apr 8;398(6727):530–533. doi: 10.1038/19104. [DOI] [PubMed] [Google Scholar]
- Weil D., Blanchard S., Kaplan J., Guilford P., Gibson F., Walsh J., Mburu P., Varela A., Levilliers J., Weston M. D. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature. 1995 Mar 2;374(6517):60–61. doi: 10.1038/374060a0. [DOI] [PubMed] [Google Scholar]
- Wu Y. C., Ricci A. J., Fettiplace R. Two components of transducer adaptation in auditory hair cells. J Neurophysiol. 1999 Nov;82(5):2171–2181. doi: 10.1152/jn.1999.82.5.2171. [DOI] [PubMed] [Google Scholar]