Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1976 Jan;31(1):7–10. doi: 10.1128/aem.31.1.7-10.1976

Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferrooxidans.

H Sakaguchi, A E Torma, M Silver
PMCID: PMC169709  PMID: 8006

Abstract

The microbiological oxidation of synthetic chalcocite and covellite has been investigated using an adapted strain of Thiobacillus ferrooxidans. Biodegradation of chalcocite was found to be 90 to 100% and that of covellite 45 to 60%. Optimum conditions for the oxidation of chalcocite were: pH, 1.7 to 2.3; temperature, 35 C; and ferric iron concentration in the range of 0.004 to 0.01 M. For covellite, the optimum conditions were: pH 2.3; temperature, 35 C; and ferric iron concentration in the range of 0.004 to 0.02 M. The energies of activation were determined to be 16.3 kcal (ca. 6.8 X 10(4) J) per mol and 11.7 kcal (ca. 4.8 X 10(4) J) per mol for chalcocite and covellite, respectively.

Full text

PDF
7

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Colmer A. R., Hinkle M. E. The Role of Microorganisms in Acid Mine Drainage: A Preliminary Report. Science. 1947 Sep 19;106(2751):253–256. doi: 10.1126/science.106.2751.253. [DOI] [PubMed] [Google Scholar]
  2. Nielsen A. M., Beck J. V. Chalcocite Oxidation and Coupled Carbon Dioxide Fixation by Thiobacillus ferrooxidans. Science. 1972 Mar 10;175(4026):1124–1126. doi: 10.1126/science.175.4026.1124. [DOI] [PubMed] [Google Scholar]
  3. RAZZELL W. E., TRUSELL P. C. ISOLATION AND PROPERTIES OF AN IRON-OXIDIZING THIOBACILLUS. J Bacteriol. 1963 Mar;85:595–603. doi: 10.1128/jb.85.3.595-603.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. SILVERMAN M. P., LUNDGREN D. G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol. 1959 May;77(5):642–647. doi: 10.1128/jb.77.5.642-647.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Silver M., Torma A. E. Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Can J Microbiol. 1974 Feb;20(2):141–147. doi: 10.1139/m74-023. [DOI] [PubMed] [Google Scholar]
  6. Silverman M. P. Mechanism of bacterial pyrite oxidation. J Bacteriol. 1967 Oct;94(4):1046–1051. doi: 10.1128/jb.94.4.1046-1051.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Torma A. E. Microbiological oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans. Rev Can Biol. 1971 Sep;30(3):209–216. [PubMed] [Google Scholar]
  8. Torma A. E., Walden C. C., Branion R. M. Microbiological leaching of a zinc sulfide concentrate. Biotechnol Bioeng. 1970 Jul;12(4):501–517. doi: 10.1002/bit.260120403. [DOI] [PubMed] [Google Scholar]
  9. Tuovinen O. H., Kelly D. P. Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Z Allg Mikrobiol. 1972;12(4):311–346. doi: 10.1002/jobm.3630120406. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES