Abstract
The influence of temperature on glucose metabolism of a psychotrophic strain of Bacillus cereus was investigated. The pH of the growth medium and spore-forming frequencies of B. cereus varied when grown at 32, 20, or 7 C. Radiorespirometric analyses revealed that vegetative cells of B. cereus metabolized glucose by simultaneous operation of the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. As the growth temperature decreased, glucose was metabolized with increased participation of the pentose phosphate pathway. The shift of cells grown at a higher temperature to a lower temperature increased the relative participation of the pentose phosphate pathway, whereas the shift of cells grown at low temperatures to a higher temperature had the opposite effect. Cells of late logarithmic phase grown at 20 and 7 C oxidized acetate by the tricarboxylic acid cycle reaction. However, cells grown at 32 C failed to oxidize acetate to CO2 to any appreciable extent. The extracellular products resulting from the metabolism of glucose decreased as the growth temperature was lowered. Organic acids were the major extracellular products of cultures grown at 32 and 20 C. Acetic acid, lactic acid, and pyruvic acid together accounted for 86.1 and 78.9% of extracellular radioactivity, respectively, at the two temperatures. The relative ratio of these three acids varied between the temperatures. Little or no acid accumulated at 7 C.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bulla L. A., St Julian G., Rhodes R. A., Hesseltine C. W. Physiology of sporeforming bacteria associated with insects. I. Glucose catabolism in vegetative cells. Can J Microbiol. 1970 Apr;16(4):243–248. doi: 10.1139/m70-045. [DOI] [PubMed] [Google Scholar]
- Carls R. A., Hanson R. S. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol. 1971 Jun;106(3):848–855. doi: 10.1128/jb.106.3.848-855.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUBOWSKI K. M. An o-toluidine method for body-fluid glucose determination. Clin Chem. 1962 May-Jun;8:215–235. [PubMed] [Google Scholar]
- DUNICAN L. K., SEELEY H. W., Jr TEMPERATURE-SENSITIVE DEXTRANSUCRASE SYNTHESIS BY A LACTOBACILLUS. J Bacteriol. 1963 Nov;86:1079–1083. doi: 10.1128/jb.86.5.1079-1083.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulco A. J. The biosynthesis of unsaturated fatty acids by bacilli. II. Temperature-dependent biosynthesis of polyunsaturated fatty acids. J Biol Chem. 1970 Jun 10;245(11):2985–2990. [PubMed] [Google Scholar]
- GOLDMAN M., BLUMENTHAL H. J. PATHWAYS OF GLUCOSE CATABOLISM IN BACILLUS CEREUS. J Bacteriol. 1964 Feb;87:377–386. doi: 10.1128/jb.87.2.377-386.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDMAN M., BLUMENTHAL H. J. PATHWAYS OF GLUCOSE CATABOLISM IN BACILLUS SUBTILIS. J Bacteriol. 1963 Aug;86:303–311. doi: 10.1128/jb.86.2.303-311.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANSON R. S., SRINIVASAN V. R., HALVORSON H. O. Biochemistry of sporulation. I. Metabolism of acetate by vegetative and sporulating cells. J Bacteriol. 1963 Feb;85:451–460. doi: 10.1128/jb.85.2.451-460.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julian G. S., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects. IV. Glucose catabolism in Bacillus larvae. J Bacteriol. 1971 Nov;108(2):828–834. doi: 10.1128/jb.108.2.828-834.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornberg H. L., Smith J. Temperature-sensitive synthesis of isocitrate lyase in Escherichia coli. Biochim Biophys Acta. 1966 Sep;123(3):654–657. doi: 10.1016/0005-2787(66)90243-7. [DOI] [PubMed] [Google Scholar]
- Larkin J. M., Stokes J. L. Isolation of psychrophilic species of Bacillus. J Bacteriol. 1966 May;91(5):1667–1671. doi: 10.1128/jb.91.5.1667-1671.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKATA H. M., HALVORSON H. O. Biochemical changes occurring during growth and sporulation of Bacillus cereus. J Bacteriol. 1960 Dec;80:801–810. doi: 10.1128/jb.80.6.801-810.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neale E. K., Chapman G. B. Effect of low temperature on the growth and fine structure of Bacillus subtilis. J Bacteriol. 1970 Oct;104(1):518–528. doi: 10.1128/jb.104.1.518-528.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PEPPER R. E., COSTILOW R. N. GLUCOSE CATABOLISM BY BACILLUS POPILLIAE AND BACILLUS LENTIMORBUS. J Bacteriol. 1964 Feb;87:303–310. doi: 10.1128/jb.87.2.303-310.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palumbo S. A., Witter L. D. The influence of temperature on the pathways of glucose catabolism in Pseudomonas fluorescens. Can J Microbiol. 1969 Sep;15(9):995–1000. doi: 10.1139/m69-178. [DOI] [PubMed] [Google Scholar]
- SOKATCH J. T., GUNSALUS I. C. Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis. J Bacteriol. 1957 Apr;73(4):452–460. doi: 10.1128/jb.73.4.452-460.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shehata T. E., Collins E. B. Isolation and identification of psychrophilic species of Bacillus from milk. Appl Microbiol. 1971 Mar;21(3):466–469. doi: 10.1128/am.21.3.466-469.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. P., Gott C. L., Qadri S. M., Scott R. H. Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. J Bacteriol. 1971 May;106(2):438–443. doi: 10.1128/jb.106.2.438-443.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]