Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1976 Apr;31(4):475–480. doi: 10.1128/aem.31.4.475-480.1976

Intestinal microflora in rats: isolation and characterization of strictly anaerobic bacteria requiring long-chain fatty acids.

M Morotomi, Y Kawai, M Mutai
PMCID: PMC169807  PMID: 1267446

Abstract

Three strains of strictly anaerobic bacteria, isolated from the cecal contents of rats, have strict requirements for long-chain fatty acids. The effect of exogenous fatty acids on the growth and fatty acid composition of the bacteria was examined. Biohydrogenation of linoleic acid into octadecenoic acid was observed. These observations suggest that long-chain fatty acids in the intestine are factors in controlling the localization and the population levels of indigenous bacteria in vivo in rats.

Full text

PDF
475

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON M. J., BRYANT M. P., KATZ I., KEENEY M. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J Bacteriol. 1962 May;83:1084–1093. doi: 10.1128/jb.83.5.1084-1093.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arank A., Syed S. A., Kenney E. B., Freter R. Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. Appl Microbiol. 1969 Apr;17(4):568–576. doi: 10.1128/am.17.4.568-576.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Broekman J. H., Steenbakkers J. F. Growth in high osmotic medium of an unsaturated fatty acid auxotroph of Escherichia coli K-12. J Bacteriol. 1973 Oct;116(1):285–289. doi: 10.1128/jb.116.1.285-289.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caldwell D. R., Bryant M. P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol. 1966 Sep;14(5):794–801. doi: 10.1128/am.14.5.794-801.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eyssen H., Parmentier G. Biohydrogenation of sterols and fatty acids by the intestinal microflora. Am J Clin Nutr. 1974 Nov;27(11):1329–1340. doi: 10.1093/ajcn/27.11.1329. [DOI] [PubMed] [Google Scholar]
  7. Eyssen H., Piessens-Denef M., Parmentier G. Role of the cecum in maintaing 5 -steroid- and fatty acid-reducing activity of the rat intestinal microflora. J Nutr. 1972 Nov;102(11):1501–1511. doi: 10.1093/jn/102.11.1501. [DOI] [PubMed] [Google Scholar]
  8. Freter R., Abrams G. D. Function of various intestinal bacteria in converting germfree mice to the normal state. Infect Immun. 1972 Aug;6(2):119–126. doi: 10.1128/iai.6.2.119-126.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herbeck J. L., Bryant M. P. Nutritional features of the intestinal anaerobe Ruminococcus bromii. Appl Microbiol. 1974 Dec;28(6):1018–1022. doi: 10.1128/am.28.6.1018-1022.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee A., Gordon J., Dubos R. Enumeration of the oxygen sensitive bacteria usually present in the intestine of healthy mice. Nature. 1968 Dec 14;220(5172):1137–1139. doi: 10.1038/2201137a0. [DOI] [PubMed] [Google Scholar]
  11. Mitsuoka T., Sega T., Yamamoto S. Eine verbesserte Methodik der qualitativen und quantitativen Analyse der Darmflora von Menschen und Tieren. Zentralbl Bakteriol Orig. 1965 Mar;195(4):455–469. [PubMed] [Google Scholar]
  12. Moore W. E., Holdeman L. V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol. 1974 May;27(5):961–979. doi: 10.1128/am.27.5.961-979.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morotomi M., Watanabe T., Suegara N., Kawai Y., Mutai M. Distribution of indigenous bacteria in the digestive tract of conventional and gnotobiotic rats. Infect Immun. 1975 May;11(5):962–968. doi: 10.1128/iai.11.5.962-968.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pearson J. R., Wiggins H. S., Drasar B. S. Conversion of long-chain unsaturated fatty acids to hydroxy acids by human intestinal bacteria. J Med Microbiol. 1974 May;7(2):265–275. doi: 10.1099/00222615-7-2-265. [DOI] [PubMed] [Google Scholar]
  15. Thomas P. J. Identification of some enteric bacteria which convert oleic acid to hydroxystearic acid in vitro. Gastroenterology. 1972 Mar;62(3):430–435. [PubMed] [Google Scholar]
  16. WEGNER G. H., FOSTER E. M. Incorporation of isobutyrate and valerate into cellular plasmalogen by Bacteroides succinogenes. J Bacteriol. 1963 Jan;85:53–61. doi: 10.1128/jb.85.1.53-61.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES