Abstract
Loss of viability in aerosols of Escherichia coli B, E. coli commune, E. coli Jepp (in nitrogen atmospheres), and Semliki forest virus (in air) was determined as a function of relative humidity at 26.5 C. The decay patterns could be accounted for accurately by means of an equation derived from a postulated mechanism involving population distributions and first-order denaturation kinetics. Analyses of published curves describing loss of viability (all of which were semiexponential, ie., J-shaped) for various microorganisms stressed by different techniques showed that the proposed mechanism also provided an explanation for effects of the following factors (in the absence of open air, oxygen, or radiation): (i) influence of relative humidity upon aerosol susvival; (ii) dissemination of aerosols from the wet and dry states; (iii) protecting additives; (iv) relative humidity change before reconstitution; (v) reconstituting fluids; (vi) water content of freeze-dried product; (vii) storage gas; and (viii) storage temperature. The date indicate that low temperatures and high pressures were likely to be conducive to the preservation of viable bacteria and viruses, provided that cold shock and decompression shock were absent.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benbough J. E. Some factors affecting the survival of airborne viruses. J Gen Virol. 1971 Mar;10(3):209–220. doi: 10.1099/0022-1317-10-3-209. [DOI] [PubMed] [Google Scholar]
- Benbough J. E. The effect of relative humidity on the survival of airborne Semliki forest virus. J Gen Virol. 1969 Jun;4(4):473–477. doi: 10.1099/0022-1317-4-4-473. [DOI] [PubMed] [Google Scholar]
- Cox C. S. Aerosol survival of Escherichia coli B disseminated from the dry state. Appl Microbiol. 1970 Apr;19(4):604–607. doi: 10.1128/am.19.4.604-607.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox C. S. Aerosol survival of Pasteurella tularensis disseminated from the wet and dry states. Appl Microbiol. 1971 Mar;21(3):482–486. doi: 10.1128/am.21.3.482-486.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox C. S., Baxter J., Maidment B. J. A mathematical expression for oxygen-induced death in dehydrated bacteria. J Gen Microbiol. 1973 Mar;75(1):179–185. doi: 10.1099/00221287-75-1-179. [DOI] [PubMed] [Google Scholar]
- Cox C. S., Bondurant M. C., Hatch M. T. Effects of oxygen on aerosol survival of radiation sensitive and resistant strains of Escherichia coli B. J Hyg (Lond) 1971 Dec;69(4):661–672. doi: 10.1017/s0022172400021938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox C. S., Gagen S. J., Baxter J. Aerosol survival of Serratia marcescens as a function of oxygen concentration, relative humidity, and time. Can J Microbiol. 1974 Nov;20(11):1529–1534. doi: 10.1139/m74-239. [DOI] [PubMed] [Google Scholar]
- Cox C. S., Goldberg L. J. Aerosol survival of Pasteurella tularensis and the influence of relative humidity. Appl Microbiol. 1972 Jan;23(1):1–3. doi: 10.1128/am.23.1.1-3.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox C. S., Harris W. J., Lee J. Viability and electron microscope studies of phages T3 and T7 subjected to freeze-drying, freeze-thawing and aerosolization. J Gen Microbiol. 1974 Mar;81(1):207–215. doi: 10.1099/00221287-81-1-207. [DOI] [PubMed] [Google Scholar]
- Cox C. S., Heckly R. J. Effects of oxygen upon freeze-dried and freeze-thawed bacteria: viability and free radical studies. Can J Microbiol. 1973 Feb;19(2):189–194. doi: 10.1139/m73-029. [DOI] [PubMed] [Google Scholar]
- Cox C. S., Hood A. M., Baxter J. Method for comparing concentrations of the open-air factor. Appl Microbiol. 1973 Oct;26(4):640–642. doi: 10.1128/am.26.4.640-642.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox C. S. Method for the routine preservation of micro-organisms. Nature. 1968 Dec 14;220(5172):1139–1139. doi: 10.1038/2201139a0. [DOI] [PubMed] [Google Scholar]
- Cox C. S. The aerosol survival and cause of death of Escherichia coli K12. J Gen Microbiol. 1968 Dec;54(2):169–175. doi: 10.1099/00221287-54-2-169. [DOI] [PubMed] [Google Scholar]
- Cox C. S. The aerosol survival of Escherichia coli B in nitrogen, argon and helium atmospheres and the influence of relative humidity. J Gen Microbiol. 1968 Jan;50(1):139–147. doi: 10.1099/00221287-50-1-139. [DOI] [PubMed] [Google Scholar]
- Cox C. S. The aerosol survival of Escherichia coli JEPP sprayed from protecting agents into nitrogen atmospheres under changing relative humidity conditions. J Gen Microbiol. 1967 Oct;49(1):109–114. doi: 10.1099/00221287-49-1-109. [DOI] [PubMed] [Google Scholar]
- Cox C. S. The cause of loss of viability of airborne Escherichia coli K12. J Gen Microbiol. 1969 Jul;57(1):77–80. doi: 10.1099/00221287-57-1-77. [DOI] [PubMed] [Google Scholar]
- Cox C. S. The survival of Escherichia coli in nitrogen atmospheres under changing conditions of relative humidity. J Gen Microbiol. 1966 Nov;45(2):283–288. doi: 10.1099/00221287-45-2-283. [DOI] [PubMed] [Google Scholar]
- Cox C. S. The survival of Escherichia coli sprayed into air and into nitrogen from distilled water and from solutions of protecting agents, as a function of relative humidity. J Gen Microbiol. 1966 Jun;43(3):383–399. doi: 10.1099/00221287-43-3-383. [DOI] [PubMed] [Google Scholar]
- Fleming P. Semliki forest virus-chick embryo cell interactions. J Gen Virol. 1973 Jun;19(3):353–367. doi: 10.1099/0022-1317-19-3-353. [DOI] [PubMed] [Google Scholar]
- Fleming P. Thermal inactivation of Semliki Forest virus. J Gen Virol. 1971 Dec;13(3):385–391. doi: 10.1099/0022-1317-13-3-385. [DOI] [PubMed] [Google Scholar]
- Greiff D., Rightsel W. A. Stabilities of suspensions of viruses after freezing or drying by vacuum sublimation and storage. Cryobiology. 1967 May-Jun;3(6):432–444. doi: 10.1016/s0011-2240(67)80153-6. [DOI] [PubMed] [Google Scholar]
- Greiff D. Stabilities of suspensions of influenza virus dried by sublimation of ice in vacuo to different contents of residual moisture and sealed under different gases. Appl Microbiol. 1970 Dec;20(6):935–938. doi: 10.1128/am.20.6.935-938.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POWELL E. O. An outline of the pattern of bacterial generation times. J Gen Microbiol. 1958 Apr;18(2):382–417. doi: 10.1099/00221287-18-2-382. [DOI] [PubMed] [Google Scholar]
- POWELL E. O., ERRINGTON F. P. Generation times of individual bacteria: some corroborative measurements. J Gen Microbiol. 1963 May;31:315–327. doi: 10.1099/00221287-31-2-315. [DOI] [PubMed] [Google Scholar]
- POWELL E. O. Growth rate and generation time of bacteria, with special reference to continuous culture. J Gen Microbiol. 1956 Dec;15(3):492–511. doi: 10.1099/00221287-15-3-492. [DOI] [PubMed] [Google Scholar]
- Powell E. O. Generation times of bacteria: real and artificial distributions. J Gen Microbiol. 1969 Sep;58(1):141–144. doi: 10.1099/00221287-58-1-141. [DOI] [PubMed] [Google Scholar]
- Unwin P. N., Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol. 1975 May 25;94(3):425–440. doi: 10.1016/0022-2836(75)90212-0. [DOI] [PubMed] [Google Scholar]
