Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1995 Mar;2(2):125–131. doi: 10.1128/cdli.2.2.125-131.1995

Anti-alpha-galactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions.

R M Hamadeh 1, U Galili 1, P Zhou 1, J M Griffiss 1
PMCID: PMC170114  PMID: 7697518

Abstract

Anti-alpha-galactosyl (anti-Gal) is a natural human serum antibody that binds to the carbohydrate Gal alpha 1,3Gal beta 1,4GlcNAc-R (alpha-galactosyl epitope) and is synthesized by 1% of circulating B lymphocytes in response to immune stimulation by enteric bacteria. We were able to purify secretory anti-Gal from human colostrum and bile by affinity chromatography on silica-linked Gal alpha 1,3Gal beta 1,4GlcNAc. We found similar secretory anti-Gal antibodies in human milk, saliva, and vaginal washings. Secretory anti-Gal from milk and saliva was exclusively immunoglobulin A (IgA); that from colostrum and bile also contained IgG and IgM isotypes. Serum was also found to contain anti-Gal IgM and IgA in addition to the previously reported IgG. Anti-Gal IgA purified from colostrum and bile had both IgA1 and IgA2. Secretory anti-Gal from saliva, milk, colostrum, and bile agglutinated rabbit erythrocytes (RRBC) and bound to bovine thyroglobulin, both of which have abundant alpha-galactosyl epitopes. The RRBC-hemagglutinating capacity of human saliva, milk, bile, and serum was specifically adsorbed by immobilized Gal alpha 1,3Gal beta 1,4GlcNAc but not by Gal alpha 1,4Gal beta 1,4GlcNAc, Gal beta 1,3GalNAc, Gal beta 1,4GlcNAc, Gal beta 1,4GlcNAc alpha 1,2Man, or Fuc alpha 1,2Gal beta 1,4GlcNAc. No RRBC-hemagglutinating activity could be detected in rat milk, rat bile, cow milk, or rabbit bile, suggesting a restricted species distribution for secretory anti-Gal similar to that found for serum anti-Gal. Colostral anti-GaI IgA bound strongly to a sample of gram-negative bacteria isolated from the throats and stools of well children as well as to an Escherichia coli K-1 blood isolate. Colostral anti-GaI IgA inhibited the binding of a Neisseria meningitidis strain to human buccal epithelial cells, suggesting that this antibody may play a protective role at the mucosal surface.

Full Text

The Full Text of this article is available as a PDF (246.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida I. C., Milani S. R., Gorin P. A., Travassos L. R. Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J Immunol. 1991 Apr 1;146(7):2394–2400. [PubMed] [Google Scholar]
  2. Björndal H., Lindberg B., Nimmich W. Structural studies on Klebsiella O groups 1 and 6 lipopolysaccharides. Acta Chem Scand. 1971;25(2):750–750. doi: 10.3891/acta.chem.scand.25-0750. [DOI] [PubMed] [Google Scholar]
  3. Budayr A. A., Halloran B. P., King J. C., Diep D., Nissenson R. A., Strewler G. J. High levels of a parathyroid hormone-like protein in milk. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7183–7185. doi: 10.1073/pnas.86.18.7183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cross A. S., Gemski P., Sadoff J. C., Orskov F., Orskov I. The importance of the K1 capsule in invasive infections caused by Escherichia coli. J Infect Dis. 1984 Feb;149(2):184–193. doi: 10.1093/infdis/149.2.184. [DOI] [PubMed] [Google Scholar]
  5. Cunningham A. S. Morbidity in breast-fed and artificially fed infants. II. J Pediatr. 1979 Nov;95(5 Pt 1):685–689. doi: 10.1016/s0022-3476(79)80711-8. [DOI] [PubMed] [Google Scholar]
  6. Curvall M., Lindberg B., Lönngren J., Rudén U., Nimmich W. Structural studies of the Klebsiella O group 8 lipopolysaccharide. Acta Chem Scand. 1973 Oct;27(10):4019–4021. doi: 10.3891/acta.chem.scand.27-4019. [DOI] [PubMed] [Google Scholar]
  7. Davin J. C., Malaise M., Foidart J., Mahieu P. Anti-alpha-galactosyl antibodies and immune complexes in children with Henoch-Schönlein purpura or IgA nephropathy. Kidney Int. 1987 May;31(5):1132–1139. doi: 10.1038/ki.1987.119. [DOI] [PubMed] [Google Scholar]
  8. Egge H., Kordowicz M., Peter-Katalinić J., Hanfland P. Immunochemistry of I/i-active oligo- and polyglycosylceramides from rabbit erythrocyte membranes. Characterization of linear, di-, and triantennary neolactoglycosphingolipids. J Biol Chem. 1985 Apr 25;260(8):4927–4935. [PubMed] [Google Scholar]
  9. Etienne-Decerf J., Malaise M., Mahieu P., Winand R. Elevated anti-alpha-galactosyl antibody titres. A marker of progression in autoimmune thyroid disorders and in endocrine ophthalmopathy? Acta Endocrinol (Copenh) 1987 May;115(1):67–74. doi: 10.1530/acta.0.1150067. [DOI] [PubMed] [Google Scholar]
  10. Eto T., Ichikawa Y., Nishimura K., Ando S., Yamakawa T. Chemistry of lipid of the posthemyolytic residue or stroma of erythrocytes. XVI. Occurrence of ceramide pentasaccharide in the membrane of erythrocytes and reticulocytes of rabbit. J Biochem. 1968 Aug;64(2):205–213. doi: 10.1093/oxfordjournals.jbchem.a128881. [DOI] [PubMed] [Google Scholar]
  11. Gabrielli A., Leoni P., Danieli G., Herrmann K., Krieg T., Wieslander J. Antibodies against galactosyl (alpha 1----3) galactose in connective tissue diseases. Arthritis Rheum. 1991 Mar;34(3):375–376. doi: 10.1002/art.1780340321. [DOI] [PubMed] [Google Scholar]
  12. Galili U., Anaraki F., Thall A., Hill-Black C., Radic M. One percent of human circulating B lymphocytes are capable of producing the natural anti-Gal antibody. Blood. 1993 Oct 15;82(8):2485–2493. [PubMed] [Google Scholar]
  13. Galili U., Buehler J., Shohet S. B., Macher B. A. The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J Exp Med. 1987 Mar 1;165(3):693–704. doi: 10.1084/jem.165.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Galili U., Clark M. R., Shohet S. B., Buehler J., Macher B. A. Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1----3Gal epitope in primates. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1369–1373. doi: 10.1073/pnas.84.5.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Galili U., Macher B. A., Buehler J., Shohet S. B. Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1----3)-linked galactose residues. J Exp Med. 1985 Aug 1;162(2):573–582. doi: 10.1084/jem.162.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galili U., Mandrell R. E., Hamadeh R. M., Shohet S. B., Griffiss J. M. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988 Jul;56(7):1730–1737. doi: 10.1128/iai.56.7.1730-1737.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Galili U., Rachmilewitz E. A., Peleg A., Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. 1984 Nov 1;160(5):1519–1531. doi: 10.1084/jem.160.5.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Galili U., Shohet S. B., Kobrin E., Stults C. L., Macher B. A. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem. 1988 Nov 25;263(33):17755–17762. [PubMed] [Google Scholar]
  19. Hamadeh R. M., Jarvis G. A., Galili U., Mandrell R. E., Zhou P., Griffiss J. M. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest. 1992 Apr;89(4):1223–1235. doi: 10.1172/JCI115706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hammer M., Zeidler H., Klimsa S., Heesemann J. Yersinia enterocolitica in the synovial membrane of patients with Yersinia-induced arthritis. Arthritis Rheum. 1990 Dec;33(12):1795–1800. doi: 10.1002/art.1780331206. [DOI] [PubMed] [Google Scholar]
  21. Jansson P. E., Lindberg A. A., Lindberg B., Wollin R. Structural studies on the hexose region of the core in lipopolysaccharides from Enterobacteriaceae. Eur J Biochem. 1981 Apr;115(3):571–577. doi: 10.1111/j.1432-1033.1981.tb06241.x. [DOI] [PubMed] [Google Scholar]
  22. Kim J. J., Mandrell R. E., Griffiss J. M. Neisseria lactamica and Neisseria meningitidis share lipooligosaccharide epitopes but lack common capsular and class 1, 2, and 3 protein epitopes. Infect Immun. 1989 Feb;57(2):602–608. doi: 10.1128/iai.57.2.602-608.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klein R., Timpl R., Zanetti F. R., Plester D., Berg P. A. High antibody levels against mouse laminin with specificity for galactosyl-(alpha 1-3)galactose in patients with inner ear diseases. Ann Otol Rhinol Laryngol. 1989 Jul;98(7 Pt 1):537–542. doi: 10.1177/000348948909800708. [DOI] [PubMed] [Google Scholar]
  24. Kovar M. G., Serdula M. K., Marks J. S., Fraser D. W. Review of the epidemiologic evidence for an association between infant feeding and infant health. Pediatrics. 1984 Oct;74(4 Pt 2):615–638. [PubMed] [Google Scholar]
  25. Narayanan I., Prakash K., Gujral V. V. The value of human milk in the prevention of infection in the high-risk low-birth-weight infant. J Pediatr. 1981 Sep;99(3):496–498. doi: 10.1016/s0022-3476(81)80360-5. [DOI] [PubMed] [Google Scholar]
  26. Ravindran B., Satapathy A. K., Das M. K. Naturally-occurring anti-alpha-galactosyl antibodies in human Plasmodium falciparum infections--a possible role for autoantibodies in malaria. Immunol Lett. 1988 Oct;19(2):137–141. doi: 10.1016/0165-2478(88)90133-2. [DOI] [PubMed] [Google Scholar]
  27. Sandrin M. S., Vaughan H. A., Dabkowski P. L., McKenzie I. F. Anti-pig IgM antibodies in human serum react predominantly with Gal(alpha 1-3)Gal epitopes. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11391–11395. doi: 10.1073/pnas.90.23.11391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stellner K., Saito H., Hakomori S. I. Determination of aminosugar linkages in glycolipids by methylation. Aminosugar linkages of ceramide pentasaccharides of rabbit erythrocytes and of Forssman antigen. Arch Biochem Biophys. 1973 Apr;155(2):464–472. doi: 10.1016/0003-9861(73)90138-0. [DOI] [PubMed] [Google Scholar]
  29. Thall A., Galili U. Distribution of Gal alpha 1----3Gal beta 1----4GlcNAc residues on secreted mammalian glycoproteins (thyroglobulin, fibrinogen, and immunoglobulin G) as measured by a sensitive solid-phase radioimmunoassay. Biochemistry. 1990 Apr 24;29(16):3959–3965. doi: 10.1021/bi00468a024. [DOI] [PubMed] [Google Scholar]
  30. Towbin H., Rosenfelder G., Wieslander J., Avila J. L., Rojas M., Szarfman A., Esser K., Nowack H., Timpl R. Circulating antibodies to mouse laminin in Chagas disease, American cutaneous leishmaniasis, and normal individuals recognize terminal galactosyl(alpha 1-3)-galactose epitopes. J Exp Med. 1987 Aug 1;166(2):419–432. doi: 10.1084/jem.166.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WIENER A. S. Origin of naturally occurring hemagglutinins and hemolysins; a review. J Immunol. 1951 Feb;66(2):287–295. [PubMed] [Google Scholar]
  32. Wetter L. A., Hamadeh R. M., Griffiss J. M., Oesterle A., Aagaard B., Way L. W. Differences in outer membrane characteristics between gallstone-associated bacteria and normal bacterial flora. Lancet. 1994 Feb 19;343(8895):444–448. doi: 10.1016/s0140-6736(94)92691-3. [DOI] [PubMed] [Google Scholar]
  33. Winand R. J., Anaraki F., Etienne-Decerf J., Galili U. Xenogeneic thyroid-stimulating hormone-like activity of the human natural anti-Gal antibody. Interaction of anti-Gal with porcine thyrocytes and with recombinant human thyroid-stimulating hormone receptors expressed on mouse cells. J Immunol. 1993 Oct 1;151(7):3923–3934. [PubMed] [Google Scholar]
  34. Winberg J., Wessner G. Does breast milk protect against septicaemia in the newborn? Lancet. 1971 May 29;1(7709):1091–1094. doi: 10.1016/s0140-6736(71)91836-8. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES