Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1995 May;2(3):302–306. doi: 10.1128/cdli.2.3.302-306.1995

Lymphocytic 2',5'-oligoadenylate synthetase activity increases prior to the appearance of neutralizing antibodies and immunoglobulin M and immunoglobulin G antibodies after primary and secondary immunization with yellow fever vaccine.

V Bonnevie-Nielsen 1, I Heron 1, T P Monath 1, C H Calisher 1
PMCID: PMC170150  PMID: 7664176

Abstract

Primary and secondary immunizations with live, attenuated yellow fever virus vaccine (17D strain) were performed in order to study the course of appearance of virus-neutralizing antibodies and immunoglobulin M (IgM) and IgG antibodies directed against the virus and the interferon-dependent enzyme 2',5'-oligoadenylate synthetase (2',5'AS) activity, determined in homogenates of peripheral B and T lymphocytes. From cellular ATP, this enzyme generates 2',5'-oligoadenylates which mediate degradation of viral mRNA by stimulation of a latent RNase. By day 4 after the first immunization, the earliest and highest 2',5'AS activity was present in the T-lymphocyte fraction. By day 7, the enzyme activity was highest in the B-lymphocyte fraction. Virus-neutralizing antibodies appeared on day 7, and IgM antibodies were present on day 12. After the second immunization, performed 2 years +/- 2 months later, the only significant increase in 2',5'AS activity was observed in the T-lymphocyte fraction. Virus-neutralizing antibodies were present from day 1, whereas no IgM antibodies were detected. By day 12, 80% of the vaccines were IgG positive. In the primary and secondary (memory) immune responses, 2',5'AS activity is expressed in the T-lymphocyte fraction prior to the appearance of antibodies directed against the virus and may serve as an early and sensitive marker of an ongoing virus infection which is otherwise difficult to detect. No change in conventional laboratory analysis parameters, such as in differential blood cell counts or total IgA, IgG, and IgM, disclosed the immune activity in either the primary or the secondary immunization.

Full Text

The Full Text of this article is available as a PDF (211.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akira S., Taga T., Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1–78. doi: 10.1016/s0065-2776(08)60532-5. [DOI] [PubMed] [Google Scholar]
  2. Balkwill F. R. Interferons. Lancet. 1989 May 13;1(8646):1060–1063. doi: 10.1016/s0140-6736(89)92455-0. [DOI] [PubMed] [Google Scholar]
  3. Bonnevie-Nielsen V., Gerdes A. M., Fleckner J., Petersen J. S., Michelsen B., Dyrberg T. Interferon stimulates the expression of 2',5'-oligoadenylate synthetase and MHC class I antigens in insulin-producing cells. J Interferon Res. 1991 Oct;11(5):255–260. doi: 10.1089/jir.1991.11.255. [DOI] [PubMed] [Google Scholar]
  4. Bonnevie-Nielsen V., Heron I., Kristensen T., Michelsen B., Lernmark A. Postimmunization activity of oligoadenylate synthetase in peripheral blood lymphocytes from healthy individuals. J Clin Lab Immunol. 1989 Apr;28(4):155–160. [PubMed] [Google Scholar]
  5. Bonnevie-Nielsen V., Larsen M. L., Frifelt J. J., Michelsen B., Lernmark A. Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine. Diabetes. 1989 Dec;38(12):1636–1642. doi: 10.2337/diab.38.12.1636. [DOI] [PubMed] [Google Scholar]
  6. Casali P., Oldstone M. B. Mechanisms of killing of measles virus-infected cells by human lymphocytes: interferon associated and unassociated cell-mediated cytotoxicity. Cell Immunol. 1982 Jul 1;70(2):330–344. doi: 10.1016/0008-8749(82)90334-3. [DOI] [PubMed] [Google Scholar]
  7. Chebath J., Benech P., Hovanessian A., Galabru J., Revel M. Four different forms of interferon-induced 2',5'-oligo(A) synthetase identified by immunoblotting in human cells. J Biol Chem. 1987 Mar 15;262(8):3852–3857. [PubMed] [Google Scholar]
  8. Cohen B., Gothelf Y., Vaiman D., Chen L., Revel M., Chebath J. Interleukin-6 induces the (2'-5') oligoadenylate synthetase gene in M1 cells through an effect on the interferon-responsive enhancer. Cytokine. 1991 Mar;3(2):83–91. doi: 10.1016/1043-4666(91)90027-b. [DOI] [PubMed] [Google Scholar]
  9. Cohen B., Peretz D., Vaiman D., Benech P., Chebath J. Enhancer-like interferon responsive sequences of the human and murine (2'-5') oligoadenylate synthetase gene promoters. EMBO J. 1988 May;7(5):1411–1419. doi: 10.1002/j.1460-2075.1988.tb02958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dinarello C. A. Interleukin-1 and its biologically related cytokines. Adv Immunol. 1989;44:153–205. doi: 10.1016/s0065-2776(08)60642-2. [DOI] [PubMed] [Google Scholar]
  11. Friedman R. M. Antiviral activity of interferons. Bacteriol Rev. 1977 Sep;41(3):543–567. doi: 10.1128/br.41.3.543-567.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gariglio M., Panico S., Gribaudo G., Martinotti M. G., Cavallo G., Landolfo S. Activation of interferon-inducible genes in vivo by synthetic double-stranded RNA, poly rI:rC. Microbiologica. 1991 Jul;14(3):179–183. [PubMed] [Google Scholar]
  13. Gerdes A. M., Hørder M., Bonnevie-Nielsen V. Gene dosage and down-regulation of the alpha-interferon receptor. Scand J Clin Lab Invest. 1992 May;52(3):189–192. doi: 10.3109/00365519209088784. [DOI] [PubMed] [Google Scholar]
  14. Gmelig-Meyling F., Ballieux R. E. Simplified procedure for the separation of human T and non-T cells. Vox Sang. 1977 Jul;33(1):5–8. doi: 10.1111/j.1423-0410.1977.tb02229.x. [DOI] [PubMed] [Google Scholar]
  15. Gray D., Kosco M., Stockinger B. Novel pathways of antigen presentation for the maintenance of memory. Int Immunol. 1991 Feb;3(2):141–148. doi: 10.1093/intimm/3.2.141. [DOI] [PubMed] [Google Scholar]
  16. Gray D., Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med. 1991 Nov 1;174(5):969–974. doi: 10.1084/jem.174.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herberman R. B., Ortaldo J. R. Natural killer cells: their roles in defenses against disease. Science. 1981 Oct 2;214(4516):24–30. doi: 10.1126/science.7025208. [DOI] [PubMed] [Google Scholar]
  18. Hilbert D. M., Cancro M. P., Scherle P. A., Nordan R. P., Van Snick J., Gerhard W., Rudikoff S. T cell derived IL-6 is differentially required for antigen-specific antibody secretion by primary and secondary B cells. J Immunol. 1989 Dec 15;143(12):4019–4024. [PubMed] [Google Scholar]
  19. Hovanessian A. G. Interferon-induced and double-stranded RNA-activated enzymes: a specific protein kinase and 2',5'-oligoadenylate synthetases. J Interferon Res. 1991 Aug;11(4):199–205. doi: 10.1089/jir.1991.11.199. [DOI] [PubMed] [Google Scholar]
  20. Jamieson B. D., Ahmed R. T cell memory. Long-term persistence of virus-specific cytotoxic T cells. J Exp Med. 1989 Jun 1;169(6):1993–2005. doi: 10.1084/jem.169.6.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Justesen J., Ferbus D., Thang M. N. Elongation mechanism and substrate specificity of 2',5'-oligoadenylate synthetase. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4618–4622. doi: 10.1073/pnas.77.8.4618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kerr I. M., Stark G. R. The control of interferon-inducible gene expression. FEBS Lett. 1991 Jul 22;285(2):194–198. doi: 10.1016/0014-5793(91)80802-a. [DOI] [PubMed] [Google Scholar]
  23. Levy D. E., Lew D. J., Decker T., Kessler D. S., Darnell J. E., Jr Synergistic interaction between interferon-alpha and interferon-gamma through induced synthesis of one subunit of the transcription factor ISGF3. EMBO J. 1990 Apr;9(4):1105–1111. doi: 10.1002/j.1460-2075.1990.tb08216.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lindsey H. S., Calisher C. H., Mathews J. H. Serum dilution neutralization test for California group virus identification and serology. J Clin Microbiol. 1976 Dec;4(6):503–510. doi: 10.1128/jcm.4.6.503-510.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Luger T. A., Krutmann J., Kirnbauer R., Urbanski A., Schwarz T., Klappacher G., Köck A., Micksche M., Malejczyk J., Schauer E. IFN-beta 2/IL-6 augments the activity of human natural killer cells. J Immunol. 1989 Aug 15;143(4):1206–1209. [PubMed] [Google Scholar]
  26. MacLennan I. C., Gray D. Antigen-driven selection of virgin and memory B cells. Immunol Rev. 1986 Jun;91:61–85. doi: 10.1111/j.1600-065x.1986.tb01484.x. [DOI] [PubMed] [Google Scholar]
  27. Mackay C. R., Marston W. L., Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med. 1990 Mar 1;171(3):801–817. doi: 10.1084/jem.171.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Monath T. P., Nystrom R. R., Bailey R. E., Calisher C. H., Muth D. J. Immunoglobulin M antibody capture enzyme-linked immunosorbent assay for diagnosis of St. Louis encephalitis. J Clin Microbiol. 1984 Oct;20(4):784–790. doi: 10.1128/jcm.20.4.784-790.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oehen S., Waldner H., Kündig T. M., Hengartner H., Zinkernagel R. M. Antivirally protective cytotoxic T cell memory to lymphocytic choriomeningitis virus is governed by persisting antigen. J Exp Med. 1992 Nov 1;176(5):1273–1281. doi: 10.1084/jem.176.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Penn L. J., Williams B. R. Interferon-induced 2-5A synthetase activity in human peripheral blood mononuclear cells after immunization with influenza virus and rubella virus vaccines. J Virol. 1984 Mar;49(3):748–753. doi: 10.1128/jvi.49.3.748-753.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schattner A., Wallach D., Merlin G., Hahn T., Levin S., Ramot B., Revel M. Variation of (2'-5') oligo A synthetase level in lymphocytes and granulocytes of patients with viral infections and leukemia. J Interferon Res. 1982;2(3):355–361. doi: 10.1089/jir.1982.2.355. [DOI] [PubMed] [Google Scholar]
  32. Sen G. C., Lengyel P. The interferon system. A bird's eye view of its biochemistry. J Biol Chem. 1992 Mar 15;267(8):5017–5020. [PubMed] [Google Scholar]
  33. Sims J. E., Gayle M. A., Slack J. L., Alderson M. R., Bird T. A., Giri J. G., Colotta F., Re F., Mantovani A., Shanebeck K. Interleukin 1 signaling occurs exclusively via the type I receptor. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6155–6159. doi: 10.1073/pnas.90.13.6155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Street N. E., Mosmann T. R. Functional diversity of T lymphocytes due to secretion of different cytokine patterns. FASEB J. 1991 Feb;5(2):171–177. doi: 10.1096/fasebj.5.2.1825981. [DOI] [PubMed] [Google Scholar]
  35. Swain S. L., Bradley L. M., Croft M., Tonkonogy S., Atkins G., Weinberg A. D., Duncan D. D., Hedrick S. M., Dutton R. W., Huston G. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol Rev. 1991 Oct;123:115–144. doi: 10.1111/j.1600-065x.1991.tb00608.x. [DOI] [PubMed] [Google Scholar]
  36. Tilles J. G., Balkwill F., Davilla J. 2',5'-Oligoadenylate synthetase and interferon in peripheral blood after rubella, measles, or mumps live virus vaccine. Proc Soc Exp Biol Med. 1987 Oct;186(1):70–74. doi: 10.3181/00379727-186-42586. [DOI] [PubMed] [Google Scholar]
  37. Wallach D., Fellous M., Revel M. Preferential effect of gamma interferon on the synthesis of HLA antigens and their mRNAs in human cells. Nature. 1982 Oct 28;299(5886):833–836. doi: 10.1038/299833a0. [DOI] [PubMed] [Google Scholar]
  38. Williams B. R., Kerr I. M., Gilbert C. S., White C. N., Ball L. A. Synthesis and breakdown of pppA2'p5'A2'p5'A and transient inhibiton of protein synthesis in extracts from interferon-treated and control cells. Eur J Biochem. 1978 Dec;92(2):455–462. doi: 10.1111/j.1432-1033.1978.tb12767.x. [DOI] [PubMed] [Google Scholar]
  39. Yang K., Samanta H., Dougherty J., Jayaram B., Broeze R., Lengyel P. Interferons, double-stranded RNA, and RNA degradation. Isolation and characterization of homogeneous human (2'-5')(a)n synthetase. J Biol Chem. 1981 Sep 10;256(17):9324–9328. [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES