Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1995 May;2(3):349–355. doi: 10.1128/cdli.2.3.349-355.1995

Infection with human T-lymphotropic virus types I and II results in alterations of cellular receptors, including the up-modulation of T-cell counterreceptors CD40, CD54, and CD80 (B7-1).

C S Dezzutti 1, D L Rudolph 1, R B Lal 1
PMCID: PMC170158  PMID: 7545080

Abstract

To examine the phenotypic alterations associated with human T-lymphotropic virus types I and II (HTLV-I and -II) infection, long-term cell lines (n = 12 HTLV-I cell lines; n = 11 HTLV-II cell lines; n = 6 virus-negative cell lines) were analyzed for the cell surface expression of various lineage markers (i.e., myeloid, progenitor, and leukocyte), integrin receptors, and receptor-counterreceptor (R-CR) pairs responsible for cellular activation. As expected, all cell lines expressed the markers characterizing the leukocyte lineage (CD43, CD44, and CD53). Of the progenitor-myeloid markers examined (CD9, CD13, CD33, CD34, and CD63), only the percent expression of CD9 was significantly increased on HTLV-I and -II-infected cell lines as compared with that on virus-negative cell lines. Analysis of the beta 1 integrin subfamily (CD29, CD49b, CD49d, CD49e, and CD49f) showed no significant change, except that CD49e was significantly decreased on the HTLV-infected cell lines. For the beta 2 integrin subfamily, the cell surface density was increased for CD18 and CD11a, while the CD11c molecule was expressed exclusively on the HTLV-I- and HTLV-II-infected cell lines. Analysis of several R-CR pairs (CD2-CD58, CD45RO-CD22, CD5-CD72, CD11a-CD54, gp39-CD40, and CD28-CD80) demonstrated that comparable levels of expression of the Rs (CD2, CD45RO, CD5, and CD28) and of some of the CRs (CD58, CD22, and CD72) were in all cell lines; however, CD54, CD40, and CD80 were expressed constitutively on the HTLV-I- and HTLV-II-infected cell lines. Functionally, the expression of these R-CR pairs did not appear to affect the autologous proliferation since monoclonal antibodies to these R-CR pairs were not able to inhibit proliferation of the infected cell lines. Taken together, our results indicate that HTLV-I and -II can modulate the expression of several T-cell activation molecules and CRs normally expressed on alternate cell types.

Full Text

The Full Text of this article is available as a PDF (247.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. A., Flowers A., Davis B. J. Direct implantation and serial transplantation of human acute lymphoblastic leukemia in hamsters, SB-2. Cancer Res. 1968 Jun;28(6):1121–1125. [PubMed] [Google Scholar]
  2. Bhat N. K., Adachi Y., Samuel K. P., Derse D. HTLV-1 gene expression by defective proviruses in an infected T-cell line. Virology. 1993 Sep;196(1):15–24. doi: 10.1006/viro.1993.1450. [DOI] [PubMed] [Google Scholar]
  3. Boucheix C., Benoit P., Frachet P., Billard M., Worthington R. E., Gagnon J., Uzan G. Molecular cloning of the CD9 antigen. A new family of cell surface proteins. J Biol Chem. 1991 Jan 5;266(1):117–122. [PubMed] [Google Scholar]
  4. Dezzutti C. S., Rudolph D. L., Dhawan S., Lal R. B. Modulation of HTLV-II-associated spontaneous lymphocyte proliferation by beta 2 integrin CD11a/CD18 involves interaction with its cognate ligand, CD54. Cell Immunol. 1994 Jun;156(1):113–123. doi: 10.1006/cimm.1994.1157. [DOI] [PubMed] [Google Scholar]
  5. Dezzutti C. S., Rudolph D. L., Roberts C. R., Lal R. B. Characterization of human T-lymphotropic virus type I- and II-infected T-cell lines: antigenic, phenotypic, and genotypic analysis. Virus Res. 1993 Jul;29(1):59–70. doi: 10.1016/0168-1702(93)90125-7. [DOI] [PubMed] [Google Scholar]
  6. Dhawan S., Weeks B. S., Abbasi F., Gralnick H. R., Notkins A. L., Klotman M. E., Yamada K. M., Klotman P. E. Increased expression of alpha 4 beta 1 and alpha 5 beta 1 integrins on HTLV-I-infected lymphocytes. Virology. 1993 Dec;197(2):778–781. doi: 10.1006/viro.1993.1656. [DOI] [PubMed] [Google Scholar]
  7. Fan S. T., Brian A. A., Lollo B. A., Mackman N., Shen N. L., Edgington T. S. CD11a/CD18 (LFA-1) integrin engagement enhances biosynthesis of early cytokines by activated T cells. Cell Immunol. 1993 Apr 15;148(1):48–59. doi: 10.1006/cimm.1993.1090. [DOI] [PubMed] [Google Scholar]
  8. Folks T., Benn S., Rabson A., Theodore T., Hoggan M. D., Martin M., Lightfoote M., Sell K. Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4539–4543. doi: 10.1073/pnas.82.13.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukudome K., Furuse M., Fukuhara N., Orita S., Imai T., Takagi S., Nagira M., Hinuma Y., Yoshie O. Strong induction of ICAM-1 in human T cells transformed by human T-cell-leukemia virus type 1 and depression of ICAM-1 or LFA-1 in adult T-cell-leukemia-derived cell lines. Int J Cancer. 1992 Sep 30;52(3):418–427. doi: 10.1002/ijc.2910520316. [DOI] [PubMed] [Google Scholar]
  10. Gerli R., Agea E., Muscat C., Tognellini R., Fiorucci G., Spinozzi F., Cernetti C., Bertotto A. Activation of cord T lymphocytes. III. Role of LFA-1/ICAM-1 and CD2/LFA-3 adhesion molecules in CD3-induced proliferative response. Cell Immunol. 1993 Apr 15;148(1):32–47. doi: 10.1006/cimm.1993.1089. [DOI] [PubMed] [Google Scholar]
  11. Gessain A., Saal F., Giron M. L., Lasneret J., Lagaye S., Gout O., De Thé G., Sigaux F., Peries J. Cell surface phenotype and human T lymphotropic virus type 1 antigen expression in 12 T cell lines derived from peripheral blood and cerebrospinal fluid of West Indian, Guyanese and African patients with tropical spastic paraparesis. J Gen Virol. 1990 Feb;71(Pt 2):333–341. doi: 10.1099/0022-1317-71-2-333. [DOI] [PubMed] [Google Scholar]
  12. Haffar O. K., Smithgall M. D., Bradshaw J., Brady B., Damle N. K., Linsley P. S. Costimulation of T-cell activation and virus production by B7 antigen on activated CD4+ T cells from human immunodeficiency virus type 1-infected donors. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11094–11098. doi: 10.1073/pnas.90.23.11094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hjelle B., Appenzeller O., Mills R., Alexander S., Torrez-Martinez N., Jahnke R., Ross G. Chronic neurodegenerative disease associated with HTLV-II infection. Lancet. 1992 Mar 14;339(8794):645–646. doi: 10.1016/0140-6736(92)90797-7. [DOI] [PubMed] [Google Scholar]
  14. Höllsberg P., Wucherpfennig K. W., Ausubel L. J., Calvo V., Bierer B. E., Hafler D. A. Characterization of HTLV-I in vivo infected T cell clones. IL-2-independent growth of nontransformed T cells. J Immunol. 1992 May 15;148(10):3256–3263. [PubMed] [Google Scholar]
  15. Imai T., Tanaka Y., Fukudome K., Takagi S., Araki K., Yoshie O. Enhanced expression of LFA-3 on human T-cell lines and leukemic cells carrying human T-cell-leukemia virus type 1. Int J Cancer. 1993 Nov 11;55(5):811–816. doi: 10.1002/ijc.2910550520. [DOI] [PubMed] [Google Scholar]
  16. Jacobson S., Lehky T., Nishimura M., Robinson S., McFarlin D. E., Dhib-Jalbut S. Isolation of HTLV-II from a patient with chronic, progressive neurological disease clinically indistinguishable from HTLV-I-associated myelopathy/tropical spastic paraparesis. Ann Neurol. 1993 Apr;33(4):392–396. doi: 10.1002/ana.410330411. [DOI] [PubMed] [Google Scholar]
  17. Kimata J. T., Palker T. J., Ratner L. The mitogenic activity of human T-cell leukemia virus type I is T-cell associated and requires the CD2/LFA-3 activation pathway. J Virol. 1993 Jun;67(6):3134–3141. doi: 10.1128/jvi.67.6.3134-3141.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kobayashi T., Miwa H., Uchida T., Matsuoka N., Kita K., Shirakawa S. Surface and cytoplasmic expression of CD2, CD13, and CD25 antigens in human T lymphotropic virus type I infected cell line. An immunoelectron microscopic study. Lab Invest. 1989 Mar;60(3):370–374. [PubMed] [Google Scholar]
  19. Koizumi S., Iwanaga M., Imai S., Yamashiro K., Mikuni C., Abe S., Kakinuma M., Saito N., Takami T., Fukazawa Y. Expression of myeloid cell phenotypes by a novel adult T-cell leukemia/lymphoma cell line. J Natl Cancer Inst. 1992 May 6;84(9):690–693. doi: 10.1093/jnci/84.9.690. [DOI] [PubMed] [Google Scholar]
  20. Koizumi S., Sugiura M., Zhang X. K., Yamashiro K., Iwanaga M., Imai S., Osato T. Simultaneous expression of T-cell and myeloid cell phenotypes in eight newly established HTLV-I-positive T-cell lines. Jpn J Cancer Res. 1992 Sep;83(9):929–932. doi: 10.1111/j.1349-7006.1992.tb02002.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lal R. B., Rudolph D. L., Rowe T., Folks T. M. Phenotypic expression of integrin membrane receptors on spontaneously proliferating CD8 cells in human T-lymphotropic virus type II (HTLV-II)-infected individuals. J Clin Immunol. 1992 Mar;12(2):75–83. doi: 10.1007/BF00918136. [DOI] [PubMed] [Google Scholar]
  22. Makgoba M. W., Sanders M. E., Ginther Luce G. E., Gugel E. A., Dustin M. L., Springer T. A., Shaw S. Functional evidence that intercellular adhesion molecule-1 (ICAM-1) is a ligand for LFA-1-dependent adhesion in T cell-mediated cytotoxicity. Eur J Immunol. 1988 Apr;18(4):637–640. doi: 10.1002/eji.1830180423. [DOI] [PubMed] [Google Scholar]
  23. Manns A., Blattner W. A. The epidemiology of the human T-cell lymphotrophic virus type I and type II: etiologic role in human disease. Transfusion. 1991 Jan;31(1):67–75. doi: 10.1046/j.1537-2995.1991.31191096189.x. [DOI] [PubMed] [Google Scholar]
  24. Minowada J., Onuma T., Moore G. E. Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J Natl Cancer Inst. 1972 Sep;49(3):891–895. [PubMed] [Google Scholar]
  25. Mori N., Murakami S., Oda S., Eto S. Human T-cell leukemia virus type I tax induces intracellular adhesion molecule-1 expression in T cells. Blood. 1994 Jul 1;84(1):350–351. [PubMed] [Google Scholar]
  26. Smith M. R., Greene W. C. Molecular biology of the type I human T-cell leukemia virus (HTLV-I) and adult T-cell leukemia. J Clin Invest. 1991 Mar;87(3):761–766. doi: 10.1172/JCI115078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  28. Tendler C. L., Greenberg S. J., Blattner W. A., Manns A., Murphy E., Fleisher T., Hanchard B., Morgan O., Burton J. D., Nelson D. L. Transactivation of interleukin 2 and its receptor induces immune activation in human T-cell lymphotropic virus type I-associated myelopathy: pathogenic implications and a rationale for immunotherapy. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5218–5222. doi: 10.1073/pnas.87.13.5218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Usuku K., Sonoda S., Osame M., Yashiki S., Takahashi K., Matsumoto M., Sawada T., Tsuji K., Tara M., Igata A. HLA haplotype-linked high immune responsiveness against HTLV-I in HTLV-I-associated myelopathy: comparison with adult T-cell leukemia/lymphoma. Ann Neurol. 1988;23 (Suppl):S143–S150. doi: 10.1002/ana.410230733. [DOI] [PubMed] [Google Scholar]
  30. Vallé A., Garrone P., Yssel H., Bonnefoy J. Y., Freedman A. S., Freeman G., Nadler L. M., Banchereau J. mAb 104, a new monoclonal antibody, recognizes the B7 antigen that is expressed on activated B cells and HTLV-1-transformed T cells. Immunology. 1990 Apr;69(4):531–535. [PMC free article] [PubMed] [Google Scholar]
  31. Weiss A., Wiskocil R. L., Stobo J. D. The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J Immunol. 1984 Jul;133(1):123–128. [PubMed] [Google Scholar]
  32. Wucherpfennig K. W., Höllsberg P., Richardson J. H., Benjamin D., Hafler D. A. T-cell activation by autologous human T-cell leukemia virus type I-infected T-cell clones. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2110–2114. doi: 10.1073/pnas.89.6.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wyss-Coray T., Gallati H., Pracht I., Limat A., Mauri D., Frutig K., Pichler W. J. Antigen-presenting human T cells and antigen-presenting B cells induce a similar cytokine profile in specific T cell clones. Eur J Immunol. 1993 Dec;23(12):3350–3357. doi: 10.1002/eji.1830231243. [DOI] [PubMed] [Google Scholar]
  34. Yodoi J., Uchiyama T. Diseases associated with HTLV-I: virus, IL-2 receptor dysregulation and redox regulation. Immunol Today. 1992 Oct;13(10):405–411. doi: 10.1016/0167-5699(92)90091-K. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES