Abstract
Universal primers targeting conserved sequences flanking the 3' end of the 16S and the 5' end of the 23S rRNA genes (rDNAs) were used to amplify the 16S-23S rDNA internal transcribed spacers (ITS) from eight species of pseudomonads which have been associated with human infections. Amplicons from reference strains of Pseudomonas aeruginosa, Pseudomonas cepacia, Pseudomonas gladioli, Pseudomonas mallei, Pseudomonas mendocina, Pseudomonas pickettii, Pseudomonas pseudomallei, and Xanthomonas maltophilia were cloned from each species, and sequence analysis revealed a total of 19 distinct ITS regions, each defining a unique sequevar with ITS sizes ranging from 394 (P. cepacia) to 641 (P. pseudomallei) bp. Five distinct ITS sequevars in P. cepacia, four in P. mendocina, three in P. aeruginosa, two each in P. gladioli and P. pseudomallei, and one each in P. mallei, P. pickettii, and X. maltophilia were identified. With the exception of one P. cepacia ITS, all ITS regions contained potential tRNA sequences for isoleucine and/or alanine. On the basis of these ITS sequence data, species-specific oligonucleotide primers were designed to differentiate P. aeruginosa, P. cepacia, and P. pickettii. The specificities of these primers were investigated by testing 220 clinical isolates, including 101 strains of P. aeruginosa, 103 strains of P. cepacia, and 16 strains of P. pickettii, in addition to 24 American Type Culture Collection (ATCC) Pseudomonas strains. The results showed that single primer pairs directed at particular ITSs were capable of specifically identifying the ATCC reference strains and all of the clinical isolates of P. aeruginosa and P. pickettii, but this was not the case with several ITS-based primer pairs tested for P. cepacia. This pathogen, on the other hand, could be specifically identified by primer pairs directed against the 23S rDNA.
Full Text
The Full Text of this article is available as a PDF (292.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aragone M. R., Maurizi D. M., Clara L. O., Navarro Estrada J. L., Ascione A. Pseudomonas mendocina, an environmental bacterium isolated from a patient with human infective endocarditis. J Clin Microbiol. 1992 Jun;30(6):1583–1584. doi: 10.1128/jcm.30.6.1583-1584.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barry T., Colleran G., Glennon M., Dunican L. K., Gannon F. The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl. 1991 Aug;1(1):51–56. doi: 10.1101/gr.1.1.51. [DOI] [PubMed] [Google Scholar]
- Barry T., Powell R., Gannon F. A general method to generate DNA probes for microorganisms. Biotechnology (N Y) 1990 Mar;8(3):233–236. doi: 10.1038/nbt0390-233. [DOI] [PubMed] [Google Scholar]
- Bercovier H., Kafri O., Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun. 1986 May 14;136(3):1136–1141. doi: 10.1016/0006-291x(86)90452-3. [DOI] [PubMed] [Google Scholar]
- Christenson J. C., Welch D. F., Mukwaya G., Muszynski M. J., Weaver R. E., Brenner D. J. Recovery of Pseudomonas gladioli from respiratory tract specimens of patients with cystic fibrosis. J Clin Microbiol. 1989 Feb;27(2):270–273. doi: 10.1128/jcm.27.2.270-273.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frothingham R., Wilson K. H. Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol. 1993 May;175(10):2818–2825. doi: 10.1128/jb.175.10.2818-2825.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höpfl P., Ludwig W., Schleifer K. H., Larsen N. The 23S ribosomal RNA higher-order structure of Pseudomonas cepacia and other prokaryotes. Eur J Biochem. 1989 Nov 6;185(2):355–364. doi: 10.1111/j.1432-1033.1989.tb15123.x. [DOI] [PubMed] [Google Scholar]
- Jensen M. A., Webster J. A., Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol. 1993 Apr;59(4):945–952. doi: 10.1128/aem.59.4.945-952.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kostman J. R., Edlind T. D., LiPuma J. J., Stull T. L. Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J Clin Microbiol. 1992 Aug;30(8):2084–2087. doi: 10.1128/jcm.30.8.2084-2087.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krawiec S., Riley M. Organization of the bacterial chromosome. Microbiol Rev. 1990 Dec;54(4):502–539. doi: 10.1128/mr.54.4.502-539.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClelland M., Petersen C., Welsh J. Length polymorphisms in tRNA intergenic spacers detected by using the polymerase chain reaction can distinguish streptococcal strains and species. J Clin Microbiol. 1992 Jun;30(6):1499–1504. doi: 10.1128/jcm.30.6.1499-1504.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaughlin G. L., Howe D. K., Biggs D. R., Smith A. R., Ludwinski P., Fox B. C., Tripathy D. N., Frasch C. E., Wenger J. D., Carey R. B. Amplification of rDNA loci to detect and type Neisseria meningitidis and other eubacteria. Mol Cell Probes. 1993 Feb;7(1):7–17. doi: 10.1006/mcpr.1993.1002. [DOI] [PubMed] [Google Scholar]
- O'Callaghan E. M., Tanner M. S., Boulnois G. J. Development of a PCR probe test for identifying Pseudomonas aeruginosa and Pseudomonas (Burkholderia) cepacia. J Clin Pathol. 1994 Mar;47(3):222–226. doi: 10.1136/jcp.47.3.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poty F., Denis C., Baufine-Ducrocq H. Infection nosocomiale à Pseudomonas pickettii. Danger de l'utilisation des résines échangeuses d'ions. Presse Med. 1987 Jun 20;16(24):1185–1187. [PubMed] [Google Scholar]
- Römling U., Grothues D., Bautsch W., Tümmler B. A physical genome map of Pseudomonas aeruginosa PAO. EMBO J. 1989 Dec 20;8(13):4081–4089. doi: 10.1002/j.1460-2075.1989.tb08592.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toschka H. Y., Höpfl P., Ludwig W., Schleifer K. H., Ulbrich N., Erdmann V. A. Complete nucleotide sequence of a 16S ribosomal RNA gene from Pseudomonas aeruginosa. Nucleic Acids Res. 1988 Mar 25;16(5):2348–2348. doi: 10.1093/nar/16.5.2348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toschka H. Y., Höpfl P., Ludwig W., Schleifer K. H., Ulbrich N., Erdmann V. A. Complete nucleotide sequence of a 23S ribosomal RNA gene from Pseudomonas aeruginosa. Nucleic Acids Res. 1987 Sep 11;15(17):7182–7182. doi: 10.1093/nar/15.17.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trotter J. A., Kuhls T. L., Pickett D. A., Reyes de la Rocha S., Welch D. F. Pneumonia caused by a newly recognized pseudomonad in a child with chronic granulomatous disease. J Clin Microbiol. 1990 Jun;28(6):1120–1124. doi: 10.1128/jcm.28.6.1120-1124.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh J., McClelland M. PCR-amplified length polymorphisms in tRNA intergenic spacers for categorizing staphylococci. Mol Microbiol. 1992 Jun;6(12):1673–1680. doi: 10.1111/j.1365-2958.1992.tb00892.x. [DOI] [PubMed] [Google Scholar]
- Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. doi: 10.1111/j.1348-0421.1992.tb02129.x. [DOI] [PubMed] [Google Scholar]