Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1995 Sep;2(5):598–603. doi: 10.1128/cdli.2.5.598-603.1995

In vitro detection of apoptotic stimuli by use of the HL-60 myeloid leukemic cell line.

J L Shellhaas 1, S H Zuckerman 1
PMCID: PMC170205  PMID: 8548540

Abstract

The human histiocytic lymphoma line HL-60 has served as a model of myeloid cell differentiation and can be induced to differentiate along the neutrophil or monocytic lineage, depending on the external stimulus. The nondifferentiated cell line retains a premyeloid leukemic phenotype and is capable of anchorage-independent growth and proliferation. The role of apoptosis in the regulation of immunologic and inflammatory events associated with homeostasis and disease has been most intensively studied in lymphocytes. In the present study, nondifferentiated HL-60 has served as a model for studying myeloid cell apoptosis by investigating apoptotic changes induced by camptothecin, a DNA topoisomerase inhibitor, as well as physiologic stimuli, including ceramide analogs and a monoclonal antibody against the Fas antigen. Multiparameter flow cytometry was used to evaluate apoptosis by measuring changes in both side scatter and propidium iodide staining. The appearance of apoptotic cells was confirmed biochemically by measuring DNA endonuclease activity by both enzyme-linked immunosorbent assay quantitation and DNA ladder formation on agarose gels and morphologically with the detection of micronuclei by confocal laser microscopy. These studies demonstrate that HL-60 can serve as an in vitro model for the detection of physiologic and pharmacologic apoptotic stimuli and for understanding the early and late cellular changes associated with induction of the apoptotic program.

Full Text

The Full Text of this article is available as a PDF (260.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews B. S., Eisenberg R. A., Theofilopoulos A. N., Izui S., Wilson C. B., McConahey P. J., Murphy E. D., Roths J. B., Dixon F. J. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978 Nov 1;148(5):1198–1215. doi: 10.1084/jem.148.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakhshi A., Jensen J. P., Goldman P., Wright J. J., McBride O. W., Epstein A. L., Korsmeyer S. J. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell. 1985 Jul;41(3):899–906. doi: 10.1016/s0092-8674(85)80070-2. [DOI] [PubMed] [Google Scholar]
  3. Cohen P. L., Eisenberg R. A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol. 1991;9:243–269. doi: 10.1146/annurev.iy.09.040191.001331. [DOI] [PubMed] [Google Scholar]
  4. Collins S. J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987 Nov;70(5):1233–1244. [PubMed] [Google Scholar]
  5. Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M. A., Lassota P., Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992;13(8):795–808. doi: 10.1002/cyto.990130802. [DOI] [PubMed] [Google Scholar]
  6. Dbaibo G. S., Obeid L. M., Hannun Y. A. Tumor necrosis factor-alpha (TNF-alpha) signal transduction through ceramide. Dissociation of growth inhibitory effects of TNF-alpha from activation of nuclear factor-kappa B. J Biol Chem. 1993 Aug 25;268(24):17762–17766. [PubMed] [Google Scholar]
  7. Gill B. M., Nishikata H., Chan G., Delovitch T. L., Ochi A. Fas antigen and sphingomyelin-ceramide turnover-mediated signaling: role in life and death of T lymphocytes. Immunol Rev. 1994 Dec;142:113–125. doi: 10.1111/j.1600-065x.1994.tb00885.x. [DOI] [PubMed] [Google Scholar]
  8. Gillette-Ferguson I., Sidman C. L. A specific intercellular pathway of apoptotic cell death is defective in the mature peripheral T cells of autoimmune lpr and gld mice. Eur J Immunol. 1994 May;24(5):1181–1185. doi: 10.1002/eji.1830240526. [DOI] [PubMed] [Google Scholar]
  9. Gorczyca W., Gong J., Ardelt B., Traganos F., Darzynkiewicz Z. The cell cycle related differences in susceptibility of HL-60 cells to apoptosis induced by various antitumor agents. Cancer Res. 1993 Jul 1;53(13):3186–3192. [PubMed] [Google Scholar]
  10. Hanabuchi S., Koyanagi M., Kawasaki A., Shinohara N., Matsuzawa A., Nishimura Y., Kobayashi Y., Yonehara S., Yagita H., Okumura K. Fas and its ligand in a general mechanism of T-cell-mediated cytotoxicity. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4930–4934. doi: 10.1073/pnas.91.11.4930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hannun Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994 Feb 4;269(5):3125–3128. [PubMed] [Google Scholar]
  12. Hotz M. A., Gong J., Traganos F., Darzynkiewicz Z. Flow cytometric detection of apoptosis: comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry. 1994 Mar 1;15(3):237–244. doi: 10.1002/cyto.990150309. [DOI] [PubMed] [Google Scholar]
  13. Jarvis W. D., Kolesnick R. N., Fornari F. A., Traylor R. S., Gewirtz D. A., Grant S. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):73–77. doi: 10.1073/pnas.91.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim M. Y., Linardic C., Obeid L., Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem. 1991 Jan 5;266(1):484–489. [PubMed] [Google Scholar]
  15. Kolesnick R., Golde D. W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 1994 May 6;77(3):325–328. doi: 10.1016/0092-8674(94)90147-3. [DOI] [PubMed] [Google Scholar]
  16. Korsmeyer S. J. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood. 1992 Aug 15;80(4):879–886. [PubMed] [Google Scholar]
  17. Krammer P. H., Behrmann I., Daniel P., Dhein J., Debatin K. M. Regulation of apoptosis in the immune system. Curr Opin Immunol. 1994 Apr;6(2):279–289. doi: 10.1016/0952-7915(94)90102-3. [DOI] [PubMed] [Google Scholar]
  18. Martin S. J., Lennon S. V., Bonham A. M., Cotter T. G. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J Immunol. 1990 Sep 15;145(6):1859–1867. [PubMed] [Google Scholar]
  19. Matsubara K., Kubota M., Adachi S., Kuwakado K., Hirota H., Wakazono Y., Akiyama Y., Mikawa H. Different mode of cell death induced by calcium ionophore in human leukemia cell lines: possible role of constitutive endonuclease. Exp Cell Res. 1994 Jan;210(1):19–25. doi: 10.1006/excr.1994.1003. [DOI] [PubMed] [Google Scholar]
  20. Moore K. J., Matlashewski G. Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J Immunol. 1994 Mar 15;152(6):2930–2937. [PubMed] [Google Scholar]
  21. Munn D. H., Beall A. C., Song D., Wrenn R. W., Throckmorton D. C. Activation-induced apoptosis in human macrophages: developmental regulation of a novel cell death pathway by macrophage colony-stimulating factor and interferon gamma. J Exp Med. 1995 Jan 1;181(1):127–136. doi: 10.1084/jem.181.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
  23. Obeid L. M., Linardic C. M., Karolak L. A., Hannun Y. A. Programmed cell death induced by ceramide. Science. 1993 Mar 19;259(5102):1769–1771. doi: 10.1126/science.8456305. [DOI] [PubMed] [Google Scholar]
  24. Okazaki T., Bielawska A., Bell R. M., Hannun Y. A. Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem. 1990 Sep 15;265(26):15823–15831. [PubMed] [Google Scholar]
  25. Perandones C. E., Illera V. A., Peckham D., Stunz L. L., Ashman R. F. Regulation of apoptosis in vitro in mature murine spleen T cells. J Immunol. 1993 Oct 1;151(7):3521–3529. [PubMed] [Google Scholar]
  26. Ratkay L. G., Tonzetich J., Waterfield J. D. Antibodies to extracellular matrix proteins in the sera of MRL-lpr mice. Clin Immunol Immunopathol. 1991 May;59(2):236–245. doi: 10.1016/0090-1229(91)90021-2. [DOI] [PubMed] [Google Scholar]
  27. Savill J. S., Wyllie A. H., Henson J. E., Walport M. J., Henson P. M., Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989 Mar;83(3):865–875. doi: 10.1172/JCI113970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Savill J., Hogg N., Ren Y., Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest. 1992 Oct;90(4):1513–1522. doi: 10.1172/JCI116019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schwartzman R. A., Cidlowski J. A. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev. 1993 Apr;14(2):133–151. doi: 10.1210/edrv-14-2-133. [DOI] [PubMed] [Google Scholar]
  30. Singer G. G., Carrera A. C., Marshak-Rothstein A., Martínez C., Abbas A. K. Apoptosis, Fas and systemic autoimmunity: the MRL-lpr/lpr model. Curr Opin Immunol. 1994 Dec;6(6):913–920. doi: 10.1016/0952-7915(94)90013-2. [DOI] [PubMed] [Google Scholar]
  31. Squier M. K., Sehnert A. J., Cohen J. J. Apoptosis in leukocytes. J Leukoc Biol. 1995 Jan;57(1):2–10. doi: 10.1002/jlb.57.1.2. [DOI] [PubMed] [Google Scholar]
  32. Takahashi T., Tanaka M., Brannan C. I., Jenkins N. A., Copeland N. G., Suda T., Nagata S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994 Mar 25;76(6):969–976. doi: 10.1016/0092-8674(94)90375-1. [DOI] [PubMed] [Google Scholar]
  33. Thompson E. B. Apoptosis and steroid hormones. Mol Endocrinol. 1994 Jun;8(6):665–673. doi: 10.1210/mend.8.6.7935482. [DOI] [PubMed] [Google Scholar]
  34. Weller M., Frei K., Groscurth P., Krammer P. H., Yonekawa Y., Fontana A. Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. J Clin Invest. 1994 Sep;94(3):954–964. doi: 10.1172/JCI117462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wong G. H., Goeddel D. V. Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways. J Immunol. 1994 Feb 15;152(4):1751–1755. [PubMed] [Google Scholar]
  36. Yonehara S., Ishii A., Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med. 1989 May 1;169(5):1747–1756. doi: 10.1084/jem.169.5.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zychlinsky A., Prevost M. C., Sansonetti P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992 Jul 9;358(6382):167–169. doi: 10.1038/358167a0. [DOI] [PubMed] [Google Scholar]
  38. van de Loosdrecht A. A., Ossenkoppele G. J., Beelen R. H., Broekhoven M. G., Dräger A. M., Langenhuijsen M. M. Apoptosis in tumor necrosis factor-alpha-dependent, monocyte-mediated leukemic cell death: a functional, morphologic, and flow-cytometric analysis. Exp Hematol. 1993 Dec;21(13):1628–1639. [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES